Advertisement

Effects of heat source geometric parameters and arc efficiency on welding temperature field, residual stress, and distortion in thin-plate full-penetration welds

  • Jiamin Sun
  • Jakob Klassen
  • Thomas Nitschke-Pagel
  • Klaus Dilger
ORIGINAL ARTICLE
  • 71 Downloads

Abstract

The Goldak’s double-ellipsoid volumetric heat source model is commonly used for arc welding in numerical simulation. Usually, heat source geometric parameters and arc efficiency need to be calibrated in thermal analysis until a good agreement with experiments is achieved. However, the influence of individual heat source geometric parameters and arc efficiency on welding temperature field, residual stress, and distortion is still unclear. In this study, this influence has been systematically investigated in a thin-plate full-penetration weld by methods of both numerical simulation and experimental method. The predicted and measured results indicate that the location of HAZ boundary and the Δt8/5 time can only be influenced by arc efficiency (significantly) and heat source width (slightly) in thin-plate full-penetration welds. Furthermore, the variation of arc efficiency can significantly affect welding residual stress and distortion, while the reasonable change of heat source geometric parameters has a slight effect. In this study, a calibration procedure of heat input model in FE simulation of thin-plate full-penetration welds is provided.

Keywords

Double-ellipsoid heat source Heat source geometric parameters Arc efficiency Welding temperature field Welding residual stress Welding distortion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Special thanks to the China Scholarship Council (CSC) for its financial support.

References

  1. 1.
    Radaj D (1992) Heat effects of welding on temperature field, residual stress and distortion. Springer, BerlinGoogle Scholar
  2. 2.
    Ueda Y, Murakawa H, Ma N (2012) Welding deformation and residual stress prevention. Elsevier, BerlinGoogle Scholar
  3. 3.
    Pan M (2012) Minimization of welding distortion and buckling. Woodhead Publishing LimitedGoogle Scholar
  4. 4.
    Mats N, Magnus K (2014) Welding heat input models. In: Encyclopedia of thermal stress. Springer, Netherlands, pp 6567–6572Google Scholar
  5. 5.
    Sun JM, Liu XZ, Tong YG, Deng DA (2014) A comparative study on welding temperature field, residual stress distribution and deformations induced by laser beam welding and CO2 gas arc welding. Mater Des 63:519–530CrossRefGoogle Scholar
  6. 6.
    Goldak J (2005) Computational welding mechanics. Springer, Science and Business MediaGoogle Scholar
  7. 7.
    Goldak J, Chaakravarti A, Bibby M (1984) A new finite element model for welding heat sources. Metall Trans B 15B:299–305CrossRefGoogle Scholar
  8. 8.
    Lindgren L (2007) Computational welding mechanics. Woodhead Publishing, CambridgeGoogle Scholar
  9. 9.
    Gery D, Long H, Maropoulos P (2005) Effects of welding speed, energy input and heat source distribution on temperature variations in butt joint welding. J Mater Process Technol 167:393–401CrossRefGoogle Scholar
  10. 10.
    Amin S, Sigmund D, Odd M (2012) Determination of welding heat source parameters from actual bead shape. Comput Mater Sci 54:176–182CrossRefGoogle Scholar
  11. 11.
    Yadaiah N, Bag S (2012) Effect of heat source parameters in thermal and mechanical analysis of linear GTA welding process. ISIJ Int 52:2069–2075CrossRefGoogle Scholar
  12. 12.
    Bradac J (2013) Calibration of heat source model in numerical simulation of fusion welding. Machines & Technologies & Materials 11:9–12Google Scholar
  13. 13.
    Tseng K, Huang J (2013) Arc efficiency assisted finite element model for predicting residual stress of TIG welded sheet. Journal of Computers 8:2182–2189CrossRefGoogle Scholar
  14. 14.
    Joshi S, Hildebrand J, Aloraier A, Rabczuk T (2013) Characterization of material properties and heat source parameters in welding simulation of two overlapping beads on a substrate plate. Comput Mater Sci 69:559–565CrossRefGoogle Scholar
  15. 15.
    Fu G, Gu J, Lourenco M, Estefen (2014) Determination of welding heat source parameters from actual bead shape. Ship and Offshore Structures 10:1–14Google Scholar
  16. 16.
    Velaga S, Ravisankar A (2017) Finite element based parametric study on the characterization of weld process moving heat source parameters in austenitic stainless steel. Int J Press Vessel Pip 157:63–73CrossRefGoogle Scholar
  17. 17.
    Tafarroj M, Kolahan F (2018) A comparative study on the performance of artificial neural networks and regression models in modeling the heat source model parameters in GTA welding. Fusion Eng Des 131:111–118CrossRefGoogle Scholar
  18. 18.
    Simufact Engineering Company (2016) Theory and user information. Hamburg, GermanyGoogle Scholar
  19. 19.
    Salerno G, Bennett C, Sun W, Becker A, Palumbo N, Kelleher J, Zhang SY (2018) On the interaction between welding residual stresses: a numerical and experimental investigation. Int J Mech Sci 144:654–667CrossRefGoogle Scholar
  20. 20.
    Bhatti A, Barsoum Z, Murakawa H, Barsoum I (2015) Influence of thermo-mechanical material properties of different steel grades on welding residual stresses and angular distortion. Mater Des 65:878–889CrossRefGoogle Scholar
  21. 21.
    Johnson A, Mehl R (1939) Reaction kinetics in processes of nucleation and growth. Trans Am Inst Min Engrs 135:416Google Scholar
  22. 22.
    Koistinen D, Marburger R (1959) A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels. Acta Metall 7:59–60CrossRefGoogle Scholar
  23. 23.
    Chang K, Lee C (2006) Characteristics of high temperature tensile properties and residual stresses in weldments of high strength steels. Mater Trans 47:348–354CrossRefGoogle Scholar
  24. 24.
    Chen B, Young J, Uy B (2006) Behavior of high strength structural steel at elevated temperatures behavior of high strength structural steel. J Struct Eng 132:1948–1954CrossRefGoogle Scholar
  25. 25.
    Loose, T (2008) Einfluß des transienten Schweißvorganges auf Verzug, Eigenspannungen und Stabilitätsverhalten axial gedrückter Kreiszylinderschalen aus Stahl. Dissertation, Karlsruhe Institute of Technology (TH)Google Scholar
  26. 26.
    Stenbacka N, Choquet I, Hurtig K (2012) Review of arc efficiency values for gas tungsten arc welding. IIW Commission IV-XII-SG212 Intermediate Meeting BAM, Berlin, GermanyGoogle Scholar
  27. 27.
    Wang JC, Rashed S, Murakawa H (2014) Mechanism investigation of welding induced buckling using inherent deformation method. Thin-Walled Struct 80:103–119CrossRefGoogle Scholar
  28. 28.
    Deng DA, Zhou YJ, Bi T, Liu XZ (2013) Experimental and numerical investigations of welding distortion induced by CO2 gas arc welding in thin-plate bead-on joints. Mater Des 52:720–729CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Jiamin Sun
    • 1
  • Jakob Klassen
    • 1
  • Thomas Nitschke-Pagel
    • 1
  • Klaus Dilger
    • 1
  1. 1.Institute of Joining and WeldingBraunschweig University of TechnologyBraunschweigGermany

Personalised recommendations