Advertisement

Electrical parameters optimisation on welding geometry in the 6063-T alloy using the Taguchi methods

  • José L. Meseguer-Valdenebro
  • Antonio Portoles
  • Eusebio Matínez-Conesa
ORIGINAL ARTICLE
  • 19 Downloads

Abstract

This paper presents a study of the influence of MIG welding process parameters on the weld bead geometry of 6063-T5 aluminium alloy. The welded profile is a longitudinally cut tubular profile that has been joined by a weld bead to make a butt joint. The influence of the electrical parameters employed, welding speed, power, and separation between edges is relevant to determine the influence of the electrical parameters of welding in each of the pieces that configure the weld. The analysed parts of the weld bead include bead height, root width, penetration, over-thickness (face), over-thickness (root), perimeter, and area of filler material. Studying the geometry of the bead weld is of great importance because the shape can condition other factors such as stress concentrators and fatigue behaviour.

Keywords

Shape Bead Weld Geometry Optimisation Taguchi 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Manladan S, Yusof F, Ramesh S, Fadzil M, Luo Z, Ao S (2017) A review on resistance spot welding of aluminum alloys. Int J Adv Manuf Technol 90(1–4):605–634CrossRefGoogle Scholar
  2. 2.
    Çam G, İpekoğlu G (2017) Recent developments in joining of aluminum alloys. Int J Adv Manuf Technol 91(5–8):1851–1866CrossRefGoogle Scholar
  3. 3.
    Carlos Dutra J, Machado Cirino L, Goncalves e Silva RH (2010) AC-GTAW of aluminium—new perspective for evaluation of role of positive polarity time. Sci Technol Weld Join 15(7):632–637CrossRefGoogle Scholar
  4. 4.
    Schenk T, Schwenk C (2010) Material response of GMA welded 1 mm thick DP600 overlap joints. Sci Technol Weld Join 15(7):567–574CrossRefGoogle Scholar
  5. 5.
    Halmoy E (1999) Simulation of rotational arc sensing in gas metal arc welding. Sci Technol Weld Join 4(6):347–351CrossRefGoogle Scholar
  6. 6.
    Jaidi J, Dutta P (2004) Three-dimensional turbulent weld pool convection in gas metal arc welding process. Sci Technol Weld Join 9(5):407–414CrossRefGoogle Scholar
  7. 7.
    Zhao L, Tsukamoto S, Arakane G, Sugino T, DebRoy T (2011) Influence of oxygen on weld geometry in fibre laser and fibre laser-GMA hybrid welding. Sci Technol Weld Join 16(2):166–173CrossRefGoogle Scholar
  8. 8.
    Kim HR, Park YW, Lee KY (2008) Application of grey relational analysis to determine welding parameters for Nd : YAG laser GMA hybrid welding of aluminium alloy. Sci Technol Weld Join 13(4):312–317CrossRefGoogle Scholar
  9. 9.
    Mendez PF, Eagar TW (2001) Welding processes for aeronautics. Adv Mater Process 159(5):39–43Google Scholar
  10. 10.
    Brandt U, Lawrence F, Sonsino C (2001) Fatigue crack initiation and growth in AlMg4. 5Mn butt weldments. Fatigue Fract Eng Mater Struct 24(2):117–126CrossRefGoogle Scholar
  11. 11.
    Michaleris P (2011) Modelling welding residual stress and distortion: current and future research trends. Sci Technol Weld Join 16(4):363–368CrossRefGoogle Scholar
  12. 12.
    Michaleris P (2011) Uncertainty quantification in modelling welding residual stress and distortion. Sci Technol Weld Join 16(8):722–727CrossRefGoogle Scholar
  13. 13.
    Song S, Dong P (2017) Residual stresses at weld repairs and effects of repair geometry. Sci Technol Weld Join 22(4):265–277CrossRefGoogle Scholar
  14. 14.
    Marya M, Marya S (1998) A theoretical and experimental analysis of variances in weld bead morphologies. J Mater Eng Perform 7(4):515–523MathSciNetCrossRefGoogle Scholar
  15. 15.
    Okui N, Ketron D, Bordelon F, Hirata Y, Clark G (2007) A methodology for prediction of fusion Zone shape. Weld J 86(2):35–s to 43–sGoogle Scholar
  16. 16.
    Kanti KM, Rao PS (2008) Prediction of bead geometry in pulsed GMA welding using back propagation neural network. J Mater Process Technol 200(1):300–305CrossRefGoogle Scholar
  17. 17.
    Lazzarin P, Tovo R (1998) A notch intensity factor approach to the stress analysis of welds. Fatigue Fract Eng Mater Struct 21(9):1089–1103CrossRefGoogle Scholar
  18. 18.
    Meseguer-Valdenebro JL, Portoles A, Martinez-Conesa E (2017) Teaching of ASME IX code to students of GTAW, GMAW/FCAW, SMAW and Saw welding processes. J Mater Educ 39(1–2):19–42Google Scholar
  19. 19.
    Romani G, Meseguer-Valdenebro JL, Portoles A (2017) Experimental research on the electrical parameters of GMAW on different positions welds. Trans Indian Inst Metals 70(1):159–166CrossRefGoogle Scholar
  20. 20.
    Javier Naranjo F, Alejandro Torres J (2015) Animations for teaching mechanics of materials using open source finite element method (FEM) tools. J Mater Educ 37(1–2):39–58Google Scholar
  21. 21.
    Meseguer-Valdenebro JL, Martinez-Conesa EJ, Serna J, Portoles A (2016) Influence of the welding parameters on the heat affected zone for aluminum welding. Therm Sci 20(2):643–653CrossRefGoogle Scholar
  22. 22.
    Meseguer-Valdenebro JL, Serna J, Portoles A, Estrems M, Miguel V, Martinez-Conesa E (2016) Experimental validation of a numerical method that predicts the size of the Heat Affected Zone. Optimization of the welding parameters by the Taguchi’s method. Trans Indian Inst Metals 69(3):783–791CrossRefGoogle Scholar
  23. 23.
    Meseguer-Valdenebro JL, Portoles A, Onoro J (2016) Numerical study of TTP curves upon welding of 6063-T5 aluminium alloy and optimization of welding process parameters by Taguchi’s method. Indian J Eng Mater Sci 23(5):341–348Google Scholar
  24. 24.
    Tarng Y, Yang W (1998) Optimisation of the weld bead geometry in gas tungsten arc welding by the Taguchi method. Int J Adv Manuf Technol 14(8):549–554CrossRefGoogle Scholar
  25. 25.
    Roy RK (2001) Design of experiments using the Taguchi approach: 16 steps to product and process Improvement, 1st edn. Wiley Interscience, USAGoogle Scholar
  26. 26.
    Lin H, Chou C (2006) Optimisation of the GTA welding process using the Taguchi method and a neural network. Sci Technol Weld Join 11(1):120–126CrossRefGoogle Scholar
  27. 27.
    Rastkerdar E, Shamanian M, Saatchi A (2013) Taguchi optimization of pulsed current GTA welding parameters for improved corrosion resistance of 5083 aluminum welds. J Mater Eng Perform 22(4):1149–1160Google Scholar
  28. 28.
    Chi C-T, Chao C-G, Liu T-F, Wang C-C (2008) Optimal parameters for low and high voltage electron beam welding of AZ series magnesium alloys and mechanism of weld shape and pore formation. Sci Technol Weld Join 13(2):199–211CrossRefGoogle Scholar
  29. 29.
    Yue XK, Tong GQ, Chen F, Ma XL, Gao XP (2017) Optimal welding parameters for small-scale resistance spot welding with response surface methodology. Sci Technol Weld Join 22(2):143–149CrossRefGoogle Scholar
  30. 30.
    Sanchez-Lozano JM, Meseguer-Valdenebro JL, Portoles A (2017) Assessment of arc welding process through the combination of TOPSIS-AHP methods with fuzzy logic. Trans Indian Inst Metals 70(4):935–946CrossRefGoogle Scholar
  31. 31.
    Bellman RE, Zadeh LA (1970) Decision-making in a fuzzy environment. Manag Sci 17(4):B-141MathSciNetCrossRefGoogle Scholar
  32. 32.
    Subashini L, Vasudevan M (2012) Adaptive neuro-fuzzy inference system (ANFIS)-based models for predicting the weld bead width and depth of penetration from the infrared thermal image of the weld pool. Metall Mater Trans B Process Metall Mater Process Sci 43(1):145–154CrossRefGoogle Scholar
  33. 33.
    Datta S, Bandyopadhyay A, Pal PK (2008) Application of Taguchi philosophy for parametric optimization of bead geometry and HAZ width in submerged arc welding using a mixture of fresh flux and fused flux. Int J Adv Manuf Technol 36(7–8):689–698CrossRefGoogle Scholar
  34. 34.
    Sooriyamoorthy E, Henry SPJ, Kalakkath P (2011) Experimental studies on optimization of process parameters and finite element analysis of temperature and stress distribution on joining of Al-Al and Al-Al2O3 using ultrasonic welding. Int J Adv Manuf Technol 55(5–8):631–640CrossRefGoogle Scholar
  35. 35.
    Lin H-L, Chou C-P (2008) Modeling and optimization of Nd : YAG laser micro-weld process using Taguchi method and a neural network. Int J Adv Manuf Technol 37(5–6):513–522CrossRefGoogle Scholar
  36. 36.
    ASM International (1998) Metal Handbook. ASM International, USAGoogle Scholar
  37. 37.
    Aydin H, Bayram A, Esme U, Kazancoglu Y, Guven O (2010) Application of grey relation analysis (gra) and taguchi method for the parametric optimization of friction stir welding (fsw) process. Mater Tehnol 44(4):205–211Google Scholar
  38. 38.
    Kasman S (2013) Multi-response optimization using the Taguchi-based grey relational analysis: a case study for dissimilar friction stir butt welding of AA6082-T6/AA5754-H111. Int J Adv Manuf Technol 68(1–4):795–804CrossRefGoogle Scholar
  39. 39.
    Ma X, Yoshida F (2003) Numerical simulation of shear stress distribution in as soldered Al-Al2O3 assembly. Sci Technol Weld Join 8(2):154–156CrossRefGoogle Scholar
  40. 40.
    Singh P, Guha B, Achar D (2003) Fatigue life prediction for AISI 304L butt welded joints having different bead geometry using local stress approach. Sci Technol Weld Join 8(4):303–308CrossRefGoogle Scholar
  41. 41.
    Gao H, Dutta RK, Huizenga RM, Amirthalingam M, Hermans MJM, Buslaps T, Richardson IM (2014) Stress relaxation due to ultrasonic impact treatment on multi-pass welds. Sci Technol Weld Join 19(6):505–513CrossRefGoogle Scholar
  42. 42.
    Spiegel M, Schiller J, and Srinivasan R (2007) Análisis de la varianza, Probab. Estad. 2a Ed México DF McGraw-Hill, pp 335–71Google Scholar
  43. 43.
    Spiegel M, Schiller J, and Srinivasan R (2007) Probabilidad y Estadística. Schaum’s Outline of Theory and Problems of Probability and Statistics. Schaum. 2 a edición. McGraw-hill. México DF[Links]Google Scholar
  44. 44.
    Meseguer-Valdenebro JL, Migue V, Caravaca M, Portoles A, Gimeno F (2015) Teaching mechanical properties of different steels for engineering students. J Mater Educ 37(3–4):103–118Google Scholar
  45. 45.
    Joseph VR, Melkote SN (2009) Statistical adjustments to Engineering models. J Qual Technol 41(4):362–375CrossRefGoogle Scholar
  46. 46.
    Natarajan U, Suganthi XH, Periyanan PR (2016) Modeling and multiresponse optimization of quality characteristics for the micro-EDM drilling process. Trans Indian Inst Metals 69(9):1675–1686CrossRefGoogle Scholar
  47. 47.
    Wasserstein RL, Lazar NA et al (2016) The ASA’s statement on p-values: context, process, and purpose. Am Stat 70(2):129–133MathSciNetCrossRefGoogle Scholar
  48. 48.
    Miguel V, Marin-Ortiz F, Manjabacas MC, Martinez-Conesa EJ, Martinez-Martinez A, Coello J (2015) Optimizaci¢n del proceso de soldadura GMAW de uniones a tope de la aleaci¢n AA 6063-T5 basada en la metodolog¡a de superficie respuesta y en la geometr¡a del cord¢n de soldadura. Rev Metal 51(1)Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • José L. Meseguer-Valdenebro
    • 1
  • Antonio Portoles
    • 1
  • Eusebio Matínez-Conesa
    • 2
  1. 1.Department of Applied Physics and Materials Engineering, School of Mechanical EngineeringTechnical University of MadridMadridSpain
  2. 2.Departamento de Tecnología de EdificaciónUniversidad Politécnica de Cartagena (UPCT)CartagenaSpain

Personalised recommendations