Advertisement

A novel pneumatic gripper for in-hand manipulation and feeding of lightweight complex parts—a consumer goods case study

  • George Michalos
  • Konstantinos Dimoulas
  • Konstantinos Mparis
  • Panagiotis Karagiannis
  • Sotiris MakrisEmail author
Open Access
ORIGINAL ARTICLE
  • 704 Downloads

Abstract

This paper discusses the design and implementation of a robotic gripper that uses compressed air to (a) orient the parts in the desired grasping position, (b) guide the parts inside a grasping mechanism and (c) feed the parts to a track conveyor with sufficient accuracy. The novelty of the approach lays in the ability to perform in-hand manipulation of the object by the gripper allowing to pick randomly placed objects that have a complex geometry. Unlike existing ‘pick and place’ operations which are mainly focused on flat objects that require minimal manipulation (rotation around vertical axis), the gripper can re-orient the parts itself, minimizing the robot’s motion. The major components of the gripper are 3D printed, allowing fast customization for different products. The manipulation and gripping mechanisms have been inspired by an application in the consumer goods industry involving the feeding of shaver handles to an assembly machine. The findings indicate that the proposed solution can be an alternative to part-dedicated, high-cost feeding equipment that is currently used.

Keywords

Robotics Pneumatic gripper Manufacturing Automation In-hand manipulation 

Notes

Acknowledgements

The authors would also like to express their gratitude to Mrs. Evita Bougiouri, Mr. Nikos Skounakis and Mr. Vasilis Davos for the valuable information and assistance they have provided.

Funding information

This research has been financially supported by the research project ‘VERSATILE – Innovative robotic applications for highly reconfigurable production lines’ (Grant Agreement 731330) [32], funded by the European Commission.

References

  1. 1.
    Hu SJ (2013) Evolving paradigms of manufacturing: from mass production to mass customization and personalization. Procedia CIRP 7:3–8.  https://doi.org/10.1016/j.procir.2013.05.002 CrossRefGoogle Scholar
  2. 2.
    Chryssolouris G (2006) Manufacturing systems: Theory and practice,  https://doi.org/10.1007/0-387-28431-1
  3. 3.
    Michalos G, Makris S, Papakostas N, Mourtzis D, Chryssolouris G (2010) Automotive assembly technologies review: challenges and outlook for a flexible and adaptive approach. CIRP J Manuf Sci Technol 2:81–91.  https://doi.org/10.1016/j.cirpj.2009.12.001 CrossRefGoogle Scholar
  4. 4.
    Krüger J, Wang L, Verl A, Bauernhansl T, Carpanzano E, Makris S, Fleischer J, Reinhart G, Franke J, Pellegrinelli S (2017) Innovative control of assembly systems and lines. CIRP Ann 66:707–730.  https://doi.org/10.1016/j.cirp.2017.05.010 CrossRefGoogle Scholar
  5. 5.
    Papakostas N, Michalos G, Makris S, Zouzias D, Chryssolouris G (2011) Industrial applications with cooperating robots for the flexible assembly. Int J Comput Integr Manuf 24:650–660.  https://doi.org/10.1080/0951192X.2011.570790 CrossRefGoogle Scholar
  6. 6.
    Makris S, Tsarouchi P, Surdilovic D, Krüger J (2014) Intuitive dual arm robot programming for assembly operations. CIRP Ann 63:13–16.  https://doi.org/10.1016/j.cirp.2014.03.017 CrossRefGoogle Scholar
  7. 7.
    Tsarouchi P, Michalos G, Makris S, Chryssolouris G (2013) Vision system for robotic handling of randomly placed objects. Procedia CIRP 9:61–66.  https://doi.org/10.1016/j.procir.2013.06.169 CrossRefGoogle Scholar
  8. 8.
    Makris S, Michalos G, Eytan A, Chryssolouris G (2012) Cooperating robots for reconfigurable assembly operations: review and challenges. Procedia CIRP 3:346–351.  https://doi.org/10.1016/j.procir.2012.07.060 CrossRefGoogle Scholar
  9. 9.
    Michalos G, Makris S, Chryssolouris G (2014) The new assembly system paradigm. Int J Comput Integr Manuf 28:1–10.  https://doi.org/10.1080/0951192X.2014.964323 Google Scholar
  10. 10.
    Bozma HI, Kalalıoğlu ME (2012) Multirobot coordination in pick-and-place tasks on a moving conveyor. Robot Comput Integr Manuf 28:530–538.  https://doi.org/10.1016/j.rcim.2011.12.001 CrossRefGoogle Scholar
  11. 11.
    Lin HC, Egbelu PJ, Wu CT (1995) A two-robot printed circuit board assembly system. Int J Comput Integr Manuf 8:21–31.  https://doi.org/10.1080/09511929508944626 CrossRefGoogle Scholar
  12. 12.
    Kaltsoukalas K, Makris S, Chryssolouris G (2015) On generating the motion of industrial robot manipulators. Robot Comput Integr Manuf 32:65–71.  https://doi.org/10.1016/j.rcim.2014.10.002 CrossRefGoogle Scholar
  13. 13.
    Makris S, Michalos G, Chryssolouris G (2012) RFID driven robotic assembly for random mix manufacturing. Robot Comput Integr Manuf 28:359–365.  https://doi.org/10.1016/j.rcim.2011.10.007 CrossRefGoogle Scholar
  14. 14.
    Fantoni G, Capiferri S, Tilli J (2014) Method for supporting the selection of robot grippers. Procedia CIRP 21:330–335.  https://doi.org/10.1016/j.procir.2014.03.152 CrossRefGoogle Scholar
  15. 15.
  16. 16.
    Fantoni G, Santochi M, Dini G, Tracht K, Scholz-Reiter B, Fleischer J, Kristoffer Lien T, Seliger G, Reinhart G, Franke J, Nørgaard Hansen H, Verl A (2014) Grasping devices and methods in automated production processes. CIRP Ann Manuf Technol 63:679–701.  https://doi.org/10.1016/j.cirp.2014.05.006 CrossRefGoogle Scholar
  17. 17.
    Stühm K, Tornow A, Schmitt J, Grunau L, Dietrich F, Dröder K (2014) A novel gripper for battery electrodes based on the Bernoulli-principle with integrated exhaust air compensation. Procedia CIRP 23:161–164.  https://doi.org/10.1016/j.procir.2014.10.065 CrossRefGoogle Scholar
  18. 18.
    Davis S, Gray JO, Caldwell DG (2008) An end effector based on the Bernoulli principle for handling sliced fruit and vegetables. Robot Comput Integr Manuf 24:249–257.  https://doi.org/10.1016/j.rcim.2006.11.002 CrossRefGoogle Scholar
  19. 19.
  20. 20.
    Petterson A, Ohlsson T, Caldwell DG, Davis S, Gray JO, Dodd TJ (2010) A Bernoulli principle gripper for handling of planar and 3D (food) products. Industrial Robot: An International Journal 37:518–526.  https://doi.org/10.1108/01439911011081669 CrossRefGoogle Scholar
  21. 21.
    Read GR (2009) Robotic hand effector. Patent GB 2(459):723Google Scholar
  22. 22.
    Phillips LB, Jo H (1994) Lightweight, multi-purpose two roll gripper for part manipulation. Proceedings of the 5th World Conference on Robotics Research. Society of Manufacturing Engineers. SME MS94–243Google Scholar
  23. 23.
    Tadakuma K, Tadakuma R, Higashimori M, Kaneko M (2011) Finger mechanism equipped omnidirectional driving roller. IEEE International Symposium on Micro-NanoMechatronics and Human Science (MHS), 475–478Google Scholar
  24. 24.
    Roy D (2015) Development of novel magnetic grippers for use in unstructured robotic workspace. Robot Comput Integr Manuf 35:16–41.  https://doi.org/10.1016/j.rcim.2015.02.003 CrossRefGoogle Scholar
  25. 25.
    Li X, Kawashima K, Kagawa T (2008) Analysis of vortex levitation. Exp Thermal Fluid Sci 32:1448–1454.  https://doi.org/10.1016/j.expthermflusci.2008.03.010 CrossRefGoogle Scholar
  26. 26.
    Li X, Kagawa T (2013) Development of a new noncontact gripper using swirl vanes. Robot Comput Integr Manuf 29:63–70.  https://doi.org/10.1016/j.rcim.2012.07.002 CrossRefGoogle Scholar
  27. 27.
    Chen F, Cannella F, Canali C, Hauptman T, Sofia G, Caldwell D (2014) In-hand precise twisting and positioning by a novel dexterous robotic gripper for industrial high-speed assembly. IEEE:270–275.  https://doi.org/10.1109/ICRA.2014.6906621
  28. 28.
    Sharma A, Noel MM (2012) Design of a low-cost five-finger anthropomorphic robotic arm with nine degrees of freedom. Robot Comput Integr Manuf 28:551–558.  https://doi.org/10.1016/j.rcim.2012.01.001 CrossRefGoogle Scholar
  29. 29.
  30. 30.
    Aivaliotis P, Zampetis A, Michalos G, Makris S (2017) A machine learning approach for visual recognition of complex parts in robotic manipulation, 27th International Conference on Flexible Automation and Intelligent Manufacturing, (FAIM2017) 27–30 June, Modena, Italy, Volume 11, pp. 423–430Google Scholar
  31. 31.
    Ignjatović I, Komenda T, Šešlija D, Mališa V (2013) Optimisation of compressed air and electricity consumption in a complex robotic cell. Robot Comput Integr Manuf 29:70–76.  https://doi.org/10.1016/j.rcim.2012.11.001 CrossRefGoogle Scholar
  32. 32.
    EU VERSATILE Project https://versatile-project.eu/
  33. 33.
    Dini G, Fantoni G, Failli F (2009) Grasping leather plies by Bernoulli grippers. CIRP Ann Manuf Technol 58:21–24.  https://doi.org/10.1016/j.cirp.2009.03.076 CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • George Michalos
    • 1
  • Konstantinos Dimoulas
    • 1
  • Konstantinos Mparis
    • 1
  • Panagiotis Karagiannis
    • 1
  • Sotiris Makris
    • 1
    Email author
  1. 1.Laboratory for Manufacturing Systems and Automation, Department of Mechanical Engineering and AeronauticsUniversity of PatrasPatrasGreece

Personalised recommendations