Development of a geometrical torque prediction method (GTPM) to automatically determine the relative torque for different tapping tools and diameters

  • Ekrem OezkayaEmail author
  • Dirk Biermann


This research paper presents the development of a geometrical torque prediction method (GTPM), which could be used to determine relative torque values for tapping processes with various tapping tools and diameters. Experimental tests and three-dimensional finite element method (FEM) simulations were carried out using four different tap tools that are frequently used in practice. A segmented workpiece model, which could significantly reduce the computing time of the FEM tapping simulations, was validated by comparing the results to the experimentally obtained data. The determined relative torque values show a parabolic progression with rising tool diameter, which is the reason why the GTPM could be developed on this basis, to further reduce the high computing time and optimize the tool design process without the production of costly prototypes. To verify the developed GTPM, the according predicted relative torque values were compared to the previously carried out simulations and experiments, showing a good agreement. A FEM software module was created to implement the developed methods in an interactive and automated way, providing an efficient method to improve the tapping tool development process.


Finite element method Tapping process Geometrical transfer dependencies Torque prediction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The Institute of Machining Technology thanks Schumacher Precision Tools GmbH in Remscheid, Germany, for the industrial research cooperation and support.

Funding information

This work was supported by the Bundesministerium für Wirtschaft und Energie (BMWi) [KF2198122KM3].


  1. 1.
    Arrazola PJ, Özel T, Umbrello D, Davies M, Jawahir IS (2013) Recent advances in modelling of metal machining processes. CIRP ANN-MANUF TECH 62:695–718. CrossRefGoogle Scholar
  2. 2.
    Chen NM, Smith AJR (2011) Modelling of straight-flute machine tapping. Proc Inst Mech Eng B J Eng Manuf 225:1552–1567. CrossRefGoogle Scholar
  3. 3.
    Ahn JH, Lee DJ, Kim SH, Kim HY, Cho KK (2003) Effects of synchronizing errors on cutting performance in the ultra-high-speed tapping. CIRP ANN-MANUF TECH 52:53–56. CrossRefGoogle Scholar
  4. 4.
    Dogra APS, DeVor RE, Kapoor SG (2002) Analysis of feed errors in tapping by contact stress model. J MANUF SCI E-T ASME 124:248–257. CrossRefGoogle Scholar
  5. 5.
    Paucksch E, Holsten S, Linß M, Tikal F (2008) Zerspantechnik. Vieweg & Teubner, WiesbadenGoogle Scholar
  6. 6.
    Stieber P (1955) Leistungsermittlung beim Gewindeschneiden. Werkstatt & Betrieb 88:583–584Google Scholar
  7. 7.
    Emuge Franken (2004) Handbuch der Gewindetechnik und FrästechnikGoogle Scholar
  8. 8.
    Stoewer HJ (1932) Schneidversuche mit Gewindebohrern auf Stahl. Stock-Zeitschrift 2:31–42Google Scholar
  9. 9.
    Sauerbrey W (1967) Ermittlung von Drehmoment und spezifischer Schnittkraft beim Gewindebohren mit geradgenuteten Maschinengewindebohrern. Fertigungstechnik und Betrieb 17:239–243Google Scholar
  10. 10.
    Lorenz G (1980) On Tapping Torque and Tap Geometry. CIRP ANN-MANUF TECH 29:1–4. CrossRefGoogle Scholar
  11. 11.
    Schallbroch H (1951) Bohrarbeit und Bohrmaschinen. Carl Hanser-Verlag, MünchenGoogle Scholar
  12. 12.
    Schröder HJ (1933) Die Schnittkräfte beim Gewindebohren. Maschinenbau Der Betrieb 12:450–453Google Scholar
  13. 13.
    Dürr H (1962) Systematik der Ausführungsformen von Gewindebohrern mit spitzen Zähnen im Anschneidzeil und ihre Schneidgeometrie. Werkstatt & Betrieb 95:701–705Google Scholar
  14. 14.
    Pietzsch L (1962) Entwicklung einer Werkzeugbestform für Gewindebohrer mit spitzen Zähnen im Anschneidteil. Werkstatt & Betrieb 95:809–812Google Scholar
  15. 15.
    Zielinski Z (1964) A method of testing tap performance. Machinery:1364–1377Google Scholar
  16. 16.
    Körsmeier K (1974) Technologie des Gewindebohrens. Dissertation, Universität HannoverGoogle Scholar
  17. 17.
    Matveev VV (1970) Determining thrust in tapping. Machines and Tooling XLI: 44–46Google Scholar
  18. 18.
    Grudov AA (1963) The Influence of Cutting Speed and Tap Wear on Torque. Machines and Tooling XXXIV:43–44Google Scholar
  19. 19.
    Jacobs HJ (1966) Bestimmung der Schnittkräfte beim Gewindebohren. Dissertation, TU DresdenGoogle Scholar
  20. 20.
    DIN 6580 (1985) Begriffe der Zerspantechnik-Bewegungen und Geometrie des Zerspanvorganges. Beuth Verlag, BerlinGoogle Scholar
  21. 21.
    DIN 6581(1985) Begriffe der Zerspantechnik-Bezugssysteme und Winkel am Schneidteil des Werkzeuges. Beuth Verlag, BerlinGoogle Scholar
  22. 22.
    Hartkamp HG (1977) Erhöhte Schnittgeschwindigkeiten beim Bohren von Innengewinden. MaschinenMarkt 83:812–815Google Scholar
  23. 23.
    Hartkamp HG (1978) Vorgänge an Werkzeugschneiden beim Innengewindebohren. MaschinenMarkt 84:826–829Google Scholar
  24. 24.
    Mota PR, Reis AM, Machado AR, Ezugwu EO, Da Silva MB (2013) Tool wear when tapping operation of compacted graphite iron. Proc Inst Mech Eng B J Eng Manuf 227:1704–1713. CrossRefGoogle Scholar
  25. 25.
    Petuelli G, Blum G, Gerdes U, Müller U (1997) Prozeßüberwachung beim Bohren und Gewinden auf der Basis von Simulationsdaten. Vieweg Verlag, WiesbadenGoogle Scholar
  26. 26.
    Armarego EJA (2003) The unified generalised mechanics of cutting approach of cutting approach—a step towards a house of predictive performance models for machining operations. Mach Sci Technol 4:319–362. CrossRefGoogle Scholar
  27. 27.
    Armarego EJA, Chen MNP (2002) Predictive cutting models for the forces and torque in machine tapping with straight flute taps. CIRP ANN-MANUF TECH 51:75–78. CrossRefGoogle Scholar
  28. 28.
    Dogra APS, Kapoor SG, DeVor RE (2002) Mechanistic model for tapping process with emphasis on process faults and hole geometry. J MANUF SCI E-T ASME 124:18–25. CrossRefGoogle Scholar
  29. 29.
    Mezentsev OA, DeVor RE, Kapoor SG (2002) Prediction of thread quality by detection and estimation of tapping faults. J MANUF SCI E-T ASME 124:643–650. CrossRefGoogle Scholar
  30. 30.
    Mezentsev OA, Zhu R, DeVor RE, Kapoor SG, Kline WA (2002) Use of radial forces for fault detection in tapping. Int J Mach Tools Manuf 42:479–488. CrossRefGoogle Scholar
  31. 31.
    Cao T, Sutherland JW (2002) Investigation of thread tapping load characteristics through mechanistics modeling and experimentation. Int J Mach Tools Manuf 42:1527–1538. CrossRefGoogle Scholar
  32. 32.
    Puzović R, Kokotović B (2006) Prediction of thrust force and torque in tapping operations using computer simulation. FME Transactions 34:1–5Google Scholar
  33. 33.
    Wan M, Altintas Y (2014) Mechanics and dynamics of thread milling process. Int J Mach Tools Manuf 87:16–26. CrossRefGoogle Scholar
  34. 34.
    Wan M, Kilic ZM, Altintas Y (2015) Mechanics and dynamics of multifunctional tools. Journal of Manufacturing Science and Engineering-ASME Transactions 137:011019–1- 011019-11.
  35. 35.
    Wan M, Ma YC, Feng J, Zhang WH (2017) Mechanics of tapping process with emphasis on measurement of feed error and estimation of its induced indentation forces. Int J Mach Tools Manuf 114:8–20. CrossRefGoogle Scholar
  36. 36.
    Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. Proceedings of the 7th Symposium on Ballistics, The Hague, pp. 541–547Google Scholar
  37. 37.
    Ye GG, Xue SF, Ma W, Jiang MQ, Ling Z, Tong XH, Dai LH (2012) Cutting AISI 1045 steel at very high speeds. Int J Mach Tools Manuf 56:1–9. CrossRefGoogle Scholar
  38. 38.
    Prawoto Y, Fanone M, Shahedi S, Ismail MS, Wan Nik WB (2012) Computational approach using Johnson–cook model on dual phase steel. COMP MATER SCI 54:48–55. CrossRefGoogle Scholar
  39. 39.
    Klocke F, Lung D, Buchkremer S (2013) Inverse identification of the constitutive equation of Inconel 718 and AISI 1045 from FE machining simulations. PROC CIRP 8:212–217. CrossRefGoogle Scholar
  40. 40.
    Davies MA, Cao Q, Cooke AL, Ivester R (2003) On the measurement and prediction of temperature fields in machining AISI 1045 steel. CIRP ANN-MANUF TECHN 51:77–80.
  41. 41.
    Oezkaya E, Biermann D (2017) Segmented and mathematical model for 3D FEM tapping simulation to predict the relative torque before tool production. Int J Mech Sci 128-129:695–708. CrossRefGoogle Scholar
  42. 42.
    Oezkaya E (2016) FEM-basiertes Softwaresystem für die effiziente 3D-Gewindebohrsimulation und Werkzeugoptimierung mittels CFD-Simulation. Dissertation, TU DortmundGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Machining TechnologyTechnical University DortmundDortmundGermany

Personalised recommendations