Design framework for model-based self-optimizing manufacturing systems

  • Ulrich Thombansen
  • Guido Buchholz
  • Daniel Frank
  • Julian Heinisch
  • Maximilian Kemper
  • Thomas Pullen
  • Viktor Reimer
  • Grigory Rotshteyn
  • Max Schwenzer
  • Sebastian Stemmler
  • Dirk Abel
  • Thomas Gries
  • Christian Hopmann
  • Fritz Klocke
  • Reinhardt Poprawe
  • Uwe Reisgen
  • Robert Schmitt
ORIGINAL ARTICLE
  • 36 Downloads

Abstract

Designing manufacturing systems requires a profound understanding of the manufacturing process and its challenges to meet final customer requirements. Considering future objectives already at an early design stage increases the flexibility of the manufacturing system and its robustness regarding changed boundary conditions. Today’s manufacturing systems rather control machine settings than process variables or even product quality. The major barrier for quality control is that in most manufacturing processes, quality cannot be measured on-line. Model-based self-sptimization (MBSO) has been developed to overcome this limitation. A combination of embedded process knowledge and tailored sensor integration enables for on-line quality estimation. The overall objective is to control key characteristics of product quality in a broad manufacturing landscape. This work describes a guideline of how to design an MBSO system with examples at each stage of the development process.

Keywords

MBSO Process control Quality control Machine tool Manufacturing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors would like to thank the German Research Foundation DFG for the kind support within the Cluster of Excellence “Integrative Production Technology for High-Wage Countries”.

References

  1. 1.
    Adams O (2016) Modellbasierte prädiktive Kraftregelung beim fräsen: Model based predictive force control in milling, Technologie der fertigungsverfahren, vol. Band 29/2016, 1. auflage edn. Apprimus Verlag, AachenGoogle Scholar
  2. 2.
    Altintas Y, Lee P (1996) A general mechanics and dynamics model for helical end mills. CIRP Ann Manuf Technol 45(1):59–64.  https://doi.org/10.1016/S0007-8506(07)63017-0 CrossRefGoogle Scholar
  3. 3.
    Altintas Y, Ma CCH (1990) Direct adaptive control of milling force. Proceedings of the IEEE International Workshop on Intelligent Motion Control 1:13–20.  https://doi.org/10.1109/IMC.1990.687288 CrossRefGoogle Scholar
  4. 4.
    Auerbach T, Gierlings S, Veselovac D, Seidner R, Kamps S, Klocke F (2015) Concept for a technology assistance system to analyze and evaluate materials and tools for milling. In: ASME Turbo expo 2015: Turbine technical conference and exposition, p. V006T21A006, DOI  https://doi.org/10.1115/GT2015-43209, (to appear in print)
  5. 5.
    Bemporad A (2006) Model predictive control design: new trends and tools. In: Proceedings of the 45th IEEE conference on decision and control, pp 6678–6683, DOI  https://doi.org/10.1109/CDC.2006.377490, (to appear in print)
  6. 6.
    Bersimis S, Psarakis S, Panaretos J (2007) Multivariate statistical process control charts: an overview. Qual Reliab Eng Int 23(5):517–543.  https://doi.org/10.1002/qre.829 CrossRefGoogle Scholar
  7. 7.
    Birkefeld K (2013) Virtuelle Optimierung von Geflecht-Preforms unter berücksichtigung von Fertigungsaspekten: Zugl.: Stuttgart, Univ., Diss., 2013, 1. aufl. edn. IFB Institut für Flugzeugbau. Universität Stuttgart. Verl. Dr Hut, MünchenGoogle Scholar
  8. 8.
    Brecher C, Özdemir D. (eds) (2017) Integrative production technology: theory and applications. Springer International Publishing, ChamGoogle Scholar
  9. 9.
    Byrne G, Dornfeld D, Inasaki I, Ketteler G, König W., Teti R (1995) Tool condition monitoring (TCM)—the status of research and industrial application. CIRP Ann 44 (2):541–567.  https://doi.org/10.1016/S0007-8506(07)60503-4 CrossRefGoogle Scholar
  10. 10.
    Campocasso S, Poulachon G, Bissey-Breton S, Costes JP, Outeiro J.C. (2017) Towards cutting force evaluation without cutting tests. CIRP Ann 66(1):77–80.  https://doi.org/10.1016/j.cirp.2017.04.023 CrossRefGoogle Scholar
  11. 11.
    Chen JH, Sheu LJ, Chen WC, Chen HK, Chen CT (2008) Application of advanced process control in plastic injection molding. In: IEEE international conference on service operations and logistics, and informatics 2008, pp 2719–2724.  https://doi.org/10.1109/SOLI.2008.4682997
  12. 12.
    Chen Z, Turng LS (2007) Injection molding quality control by integrating weight feedback into a cascade closed-loop control system. Polym Eng Sci 47 (6):852–862.  https://doi.org/10.1002/pen.20769 CrossRefGoogle Scholar
  13. 13.
    Chryssolouris G (1992) Manufacturing systems: theory and practice. Springer Texts in Mechanical Engineering. Springer, New York.  https://doi.org/10.1007/978-1-4757-2213-0 CrossRefGoogle Scholar
  14. 14.
    Colledani M, Tolio T, Fischer A, Iung B, Lanza G, Schmitt R, Váncza J (2014) Design and management of manufacturing systems for production quality. CIRP Ann Manuf Technol 63(2):773–796.  https://doi.org/10.1016/j.cirp.2014.05.002 CrossRefGoogle Scholar
  15. 15.
    Daneshmend LK, Pak HA (1986) Model reference adaptive control of feed force in turning. J Dyn Syst Meas Control 108(3):215–222.  https://doi.org/10.1115/1.3143770 CrossRefMATHGoogle Scholar
  16. 16.
    Dean A, Morris M, Stufken J, Bingham D (2015) Handbook of design and analysis of experiments. Chapman & Hall/CRC handbooks of modern statistical methods. CRC Press a Chapman & Hall book, Boca Raton and London and New YorkMATHGoogle Scholar
  17. 17.
    Dewantoro G, Feriyonika F (2011) Model reference adaptive control of cavity pressure in injection molding during filling and packing phases. In: 2nd international conference on instrumentation control and automation (ICA), pp 47–52.  https://doi.org/10.1109/ICA.2011.6130128
  18. 18.
    Fei NC, Mehat NM, Kamaruddin S (2013) Practical applications of Taguchi method for optimization of processing parameters for plastic injection moulding: a retrospective review. ISRN Ind Eng 2013(1526):1–11.  https://doi.org/10.1155/2013/462174 Google Scholar
  19. 19.
    Friedman A, Jiang LS (1984) A Stefan-Signorini problem. J Differ Equ 51(2):213–231.  https://doi.org/10.1016/0022-0396(84)90108-6 MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Fussell BK, Srinivasan K (1991) Adaptive control of force in end milling operations—an evaluation of available algorithms. J Manuf Syst 10(1):8–20.  https://doi.org/10.1016/0278-6125(91)90043-2 CrossRefGoogle Scholar
  21. 21.
    Gao R, Wang L, Teti R, Dornfeld D, Kumara S, Mori M, Helu M (2015) Cloud-enabled prognosis for manufacturing. CIRP Ann 64(2):749–772.  https://doi.org/10.1016/j.cirp.2015.05.011 CrossRefGoogle Scholar
  22. 22.
    Gloy YS, Cloppenburg F, Gries T (2017) Integration of the vertical warp stop motion positioning in the model-based self-optimization of the weaving process. Int J Adv Manuf Technol 90 (9):3619–3632.  https://doi.org/10.1007/s00170-016-9666-1 CrossRefGoogle Scholar
  23. 23.
    Gloy YS, Sandjaja F, Gries T (2015) Model based self-optimisation of the weaving process. CIRP J Manuf Sci Technol CIRP-JMST 9:88–96.  https://doi.org/10.1016/j.cirpj.2015.01.001 CrossRefGoogle Scholar
  24. 24.
    Havlicsek H, Alleyne A (1999) Nonlinear control of an electrohydraulic injection molding machine via iterative adaptive learning. IEEE/ASME Trans Mechatron 4(3):312–323.  https://doi.org/10.1109/3516.789689 CrossRefGoogle Scholar
  25. 25.
    Hering E (2010) Sensoren: Funktionsweise und Einsatzgebiete, 1. aufl. edn. Praxis. Vieweg, F, WiesbadenGoogle Scholar
  26. 26.
    Hermanns T, Schulz W, Vossen G, Thombansen U (2015) Mathematical modelling and linear stability analysis of laser fusion cutting. In: [International conference on numerical analysis and applied mathematics 2014, ICNAAM 2015, 22.09.2015-28.09.2015, rhodes, greece], AIP conference proceedings, vol. 1738, p. 370002. American Institute of Physics, Melville.  https://doi.org/10.1063/1.4952147
  27. 27.
    Hopmann C, Ressmann A, Reiter M, Stemmler S, Abel D (2016) A self-optimising injection moulding process with model-based control system parameterisation. Int J Comput Integr Manuf 29(11):1190–1199.  https://doi.org/10.1080/0951192X.2015.1066035 CrossRefGoogle Scholar
  28. 28.
    Keitzel G (2016) Präventive Parameteranpassung zur Sicherstellung des Spanabtransports beim Einlippentiefbohren, Technologie der fertigungsverfahren, vol. 2016, Band 27, 1. auflage edn. Apprimus Verlag AachenGoogle Scholar
  29. 29.
    Kienzle O (1952) Die Bestimmung von kräften und Leistungen an spanenden Werkzeugmaschinen VDI-z 96Google Scholar
  30. 30.
    Klocke F, Abel D, Gries T, Hopmann C, Loosen P, Poprawe R, Reisgen U, Schmitt R, Schulz W, Abels P, Adams O, Auerbach T, Bobek T, Buchholz G, Döbbeler B, Frank D, Heinisch J, Hermanns T, Gloy YS, Keitzel G, Kemper M, Suarez Martel D, Reimer V, Reiter M, Saggiomo M, Schwenzer M, Stemmler S, Stoyanov S, Thombansen U, Veselovac D, Willms K (2017). In: Brecher C, Özdemir D (eds) Self-optimizing production technologies. Springer International Publishing, Cham, pp 745–875.  https://doi.org/10.1007/978-3-319-47452-6_9
  31. 31.
    Koren Y, Masory O, Malkin S (1981) Adaptive control with process estimation. CIRP Ann Manuf Technol 30(1):373–376.  https://doi.org/10.1016/S0007-8506(07)60960-3 CrossRefGoogle Scholar
  32. 32.
    Landers RG, Ulsoy AG, Ma YH (2004) A comparison of model-based machining force control approaches. Int J Mach Tools Manuf 44 (7–8):733–748.  https://doi.org/10.1016/j.ijmachtools.2004.02.005 CrossRefGoogle Scholar
  33. 33.
    Maybeck PS (Unknown Month 1979) Stochastic models, estimation, and control. Academic Press, New YorkGoogle Scholar
  34. 34.
    Nolzen H, Isermann R (1995) Adaptive control of the cutting power for milling operation. American Control Conference, Proceedings of the 1995 3:2185–2189.  https://doi.org/10.1109/ACC.1995.531287 CrossRefGoogle Scholar
  35. 35.
    Permin E, Bertelsmeier F, Blum M, Bützler J., Haag S, Kuz S, Özdemir D., Stemmler S, Thombansen U, Schmitt R, Brecher C, Schlick C, Abel D, Poprawe R, Loosen P, Schulz W, Schuh G (2016) Self-optimizing production systems. Procedia CIRP 41(Supplement C):417–422.  https://doi.org/10.1016/j.procir.2015.12.114 CrossRefGoogle Scholar
  36. 36.
    Powell M (2009) The BOBYQA algorithm for bound constrained optimization without derivatives. http://www.damtp.cam.ac.uk/user/na/NA_papers/NA2009_06.pdf. DAMTP 2009/NA06
  37. 37.
    Rao RV (2011) Advanced modeling and optimization of manufacturing processes: international research and development. Springer series in advanced manufacturing. Springer, LondonCrossRefGoogle Scholar
  38. 38.
    Reimer V, Alptekin S, Gries T (2016) Investigation of the relations between the parameters in the radial braiding process. In: Kyosev Y. (ed) Recent developments in braiding and narrow weaving. Springer International Publishing, Cham, pp 111–120.  https://doi.org/10.1007/978-3-319-29932-7_11
  39. 39.
    Reimer V, Persiyanov-Dubrov M, Dawson J, Gries T (2016) Developing control systems for the radial over-braiding process. In: Proceeding of the 17th European conference on composite materials - ECCM17, vol 17Google Scholar
  40. 40.
    Reisgen U, Willms K, Herfert D (2015) Optimierung von Prozessparametern beim automatisierten MSG-Schweißen durch die inverse Nutzung von Ersatzmodellen. Schweissen und Schneiden 67(10):602–609. http://publications.rwth-aachen.de/record/540785 Google Scholar
  41. 41.
    Richalet J (1993) Industrial application of model based predictive control. Automatica 29:1251–1274MathSciNetCrossRefGoogle Scholar
  42. 42.
    Rockel H (2006) Analyse und Synthese parametrischer Iterativ Lernender Regelungen: Zugl.: Clausthal, Techn. Univ., Diss., 2006, Fortschritt-Berichte VDI Reihe 8, Mess-, Steuerungs- und regelungstechnik, vol. 1103, als ms. gedr edn. VDI-Verl., DüsseldorfGoogle Scholar
  43. 43.
    Saggiomo M, Kemper M, Gloy YS, Gries T (2016) Weaving machine as cyber-physical production system. In: Proceedings of the 2016 IEEE international conference on industrial technology (ICIT)Google Scholar
  44. 44.
    Saravanan R, Asokan P, Sachithanandam M (2001) Comparative analysis of conventional and non-conventional optimisation techniques for CNC turning process. Int J Adv Manuf Technol 17(7):471–476.  https://doi.org/10.1007/s001700170146 CrossRefGoogle Scholar
  45. 45.
    Schwenzer M, Adams O, Klocke F, Stemmler S, Abel D (2017) Model-based predictive force control in milling: determination of reference trajectory. Prod Eng 11(2):107–115.  https://doi.org/10.1007/s11740-017-0721-z. http://link.springer.com/10.1007/s11740-017-0721-z CrossRefGoogle Scholar
  46. 46.
    Schwenzer M, Auerbach T, Döbbeler B., Klocke F (2018) Force model identification in milling—an algorithmic review, San SebastianGoogle Scholar
  47. 47.
    Shewhart WA (2012) Statistical method from the viewpoint of quality control. Dover Publications. http://public.eblib.com/choice/publicfullrecord.aspx?p=1919684. OCLC: 869525873
  48. 48.
    Stemmler S, Abel D, Adams O, Klocke F (2016) Model predictive feed rate control for a milling machine. 8th IFAC Conference on Manufacturing Modelling, Management and Control MIM 2016Troyes, France, 28—30 June 2016 49(12):11–16.  https://doi.org/10.1016/j.ifacol.2016.07.542. http://www.sciencedirect.com/science/article/pii/S2405896316307959 Google Scholar
  49. 49.
    Stemmler S, Abel D, Schwenzer M, Adams O, Klocke F (2017) Model predictive control for force control in milling. IFAC-PapersOnLine 50(1):15,871–15,876.  https://doi.org/10.1016/j.ifacol.2017.08.2336. http://linkinghub.elsevier.com/retrieve/pii/S2405896317331518 CrossRefGoogle Scholar
  50. 50.
    Teti R, Jemielniak K, O’Donnell G, Dornfeld D (2010) Advanced monitoring of machining operations. CIRP Ann Manuf Technol 59(2):717–739.  https://doi.org/10.1016/j.cirp.2010.05.010 CrossRefGoogle Scholar
  51. 51.
    Thombansen U, Hermanns T, Molitor T, Pereira M, Schulz W (2014) Measurement of cut front properties in laser cutting. Phys Procedia 56(Supplement C):885–891.  https://doi.org/10.1016/j.phpro.2014.08.107 CrossRefGoogle Scholar
  52. 52.
    Thombansen U, Purrio M, Buchholz G, Hermanns T, Molitor T, Willms K, Schulz W, Reisgen U (2016) Determination of process variables in melt-based manufacturing processes. Int J Comput Integr Manuf 29 (11):1147–1158.  https://doi.org/10.1080/0951192X.2016.1145799 CrossRefGoogle Scholar
  53. 53.
    Varela AE (2000) Self-tuning pressure control in an injection moulding cavity during filling. Chem Eng Res Des 78(1):79–86.  https://doi.org/10.1205/026387600526906 CrossRefGoogle Scholar
  54. 54.
    Woll SLB, Cooper DJ (1997) Pattern-based closed-loop quality control for the injection molding process. Polym Eng Sci 37(5):801–812.  https://doi.org/10.1002/pen.11723 CrossRefGoogle Scholar
  55. 55.
    Yang Y, Gao F (1999) Cycle-to-cycle and within-cycle adaptive control of nozzle pressure during packing-holding for thermoplastic injection molding. Polym Eng Sci 39(10):2042–2063.  https://doi.org/10.1002/pen.11597 CrossRefGoogle Scholar
  56. 56.
    Yanushevsky R, Minis I (1990) Optimal control of the cutting force in metal cutting operations. In: 1990 American control conference, pp 2947–2952Google Scholar
  57. 57.
    Zheng HY, Brookfield DJ, Steen WM (1990) Experimental study of the relationship between in-process signals and cut quality in gas-assisted laser cutting. In: Opower H (ed) The hague ’90, 12-16 april, SPIE Proceedings, SPIE, pp 218–230.  https://doi.org/10.1117/12.20547

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Ulrich Thombansen
    • 1
  • Guido Buchholz
    • 2
  • Daniel Frank
    • 3
  • Julian Heinisch
    • 4
  • Maximilian Kemper
    • 5
  • Thomas Pullen
    • 3
  • Viktor Reimer
    • 5
  • Grigory Rotshteyn
    • 6
  • Max Schwenzer
    • 3
  • Sebastian Stemmler
    • 7
  • Dirk Abel
    • 7
  • Thomas Gries
    • 5
  • Christian Hopmann
    • 4
  • Fritz Klocke
    • 3
  • Reinhardt Poprawe
    • 1
  • Uwe Reisgen
    • 2
  • Robert Schmitt
    • 3
  1. 1.Intitute for Laser Technology (ILT)FraunhoferAachenGermany
  2. 2.Welding and Joining Institute (ISF)RWTH Aachen UniversityAachenGermany
  3. 3.Laboratory for Machine Tools and Production Engineering (WZL)RWTH Aachen UniversityAachenGermany
  4. 4.Institute of Plastics Processing (IKV) in Industry and the Skilled CraftsRWTH Aachen UniversityAachenGermany
  5. 5.Istitut für Textiltechnik (ITA)RWTH Aachen UniversityAachenGermany
  6. 6.Intitute for Production Technology (IPT)FraunhoferAachenGermany
  7. 7.Istitute of Automatic Control (IRT)RWTH Aachen UniversityAachenGermany

Personalised recommendations