Product-service system (PSS) complexity metrics within mass customization and Industry 4.0 environment

  • Dimitris MourtzisEmail author
  • Sophia Fotia
  • Nikoletta Boli
  • Pietro Pittaro


The design and evaluation of product-service systems (PSS) constitutes a challenging problem due to its multidimensionality. This challenge becomes bigger when the PSS customization is required within the new manufacturing paradigm of Industry 4.0. Nevertheless, limited literature work is observed regarding the customization of PSS and the PSS investigation within the Industry 4.0. Towards bridging these gaps, the present research work proposes a methodology for the quantification of PSS customization complexity, considering Industry 4.0 aspects. The proposed metrics are applied in a real industrial case study from a large laser machining industry, aiming to evaluate the different PSS alternatives in terms of complexity. It is demonstrated that the proposed approach can support the strategic level decision-making of a company, by quantifying the complexity and producing additional meaningful information towards the selection of the product and services that could be designed and offered to the customers.


Complexity Customization Product-service systems (PSS) Industry 4.0 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work has been partially supported by the H2020 EC funded project “An Integrated Collaborative Platform for Managing the Product-Service Engineering Lifecycle – ICP4Life” (GA No. 636862).


  1. 1.
    Mourtzis D, Doukas M (2014) The evolution of manufacturing systems: from craftsmanship to the era of customisation. In: Handbook of Research on Design and Management of Lean Production Systems, US, AmericaGoogle Scholar
  2. 2.
    Meier H, Roy R, Seliger G (2010) Industrial product-service systems-IPS2. CIRP Ann Manuf Technol 59:607–627. CrossRefGoogle Scholar
  3. 3.
    Shimomura Y, Nemoto Y, Kimita K (2015) A method for analyzing conceptual design process of product-service systems. CIRP Ann Manuf Technol 64:145–148. CrossRefGoogle Scholar
  4. 4.
    Goedkoop MJ et al (1999) Product service systems, ecological and economic basics. Pre Consult Amersfoort.
  5. 5.
    Lee S et al (2012) Dynamic and multidimensional measurement of product-service system (PSS) sustainability: a triple bottom line (TBL)-based system dynamics approach. J Clean Prod 32:173–182. CrossRefGoogle Scholar
  6. 6.
    Xing K, Wang HF, Qian W (2013) A sustainability-oriented multi-dimensional value assessment model for product-service development. Int J Prod Res 51:5908–5933. CrossRefGoogle Scholar
  7. 7.
    Chen D et al (2015) PSS solution evaluation considering sustainability under hybrid uncertain environments. Expert Syst Appl 42:822–5838. Google Scholar
  8. 8.
    Huang GQ et al (2011) Establishing production service system and information collaboration platform for mold and die products. Int J Adv Manuf Technol 52:1149–1160. CrossRefGoogle Scholar
  9. 9.
    Zhu QQ et al (2011) Implementing an industrial product-service system for CNC machine tool. Int J Adv Manuf Technol 52:1133–1147. CrossRefGoogle Scholar
  10. 10.
    Baines TS et al (2007) State-of-the-art in product service-systems. Proc Inst Mech Eng B J Eng Manuf 221:1–11. Google Scholar
  11. 11.
    Komoto H, Tomiyama T (2008) Integration of a service CAD and a life cycle simulator. CIRP Ann Manuf Technol 57:9–12. CrossRefGoogle Scholar
  12. 12.
    Vasantha G et al (2012) A review of product–service systems design methodologies. J Eng Des 23:635–659. CrossRefGoogle Scholar
  13. 13.
    Tran T, Park JY (2015) Development of a strategic prototyping framework for product service systems using co-creation approach. Procedia CIRP 30:1–6. CrossRefGoogle Scholar
  14. 14.
    Chryssolouris G (2006) Manufacturing systems: theory and practice, 2nd edn. Springer-Verlag, New YorkGoogle Scholar
  15. 15.
    Pine J (1993) Mass customization: the new frontier in business competition. Harvard Business PressGoogle Scholar
  16. 16.
    Da Silveira G, Borenstein D, Fogliatto FS (2001) Mass customization: literature review and research directions. Int J Prod Econ 72:1–13. CrossRefGoogle Scholar
  17. 17.
    Hu HA et al (2012) Development of sustainability evaluation model for implementing product service systems. Int J Environ Sci Technol 9:343–354. CrossRefGoogle Scholar
  18. 18.
    Papakostas N, Makris S, Xanthakis V, Chryssolouris G (2008) Supply chain modeling and control for producing highly customized products. CIRP Ann Manuf Technol 57:451–454. CrossRefGoogle Scholar
  19. 19.
    Mourtzis D, Doukas M (2013) Decentralized manufacturing systems review: challenges and outlook. Robust Manufacturing Control: Proceedings of the CIRP Sponsored Conference RoMaC 2012 355–369.,749-2_26.
  20. 20.
    Song W, Sakao T (2016) Service conflict identification and resolution for design of product-service offerings. Comput Ind Eng 98:91–101. CrossRefGoogle Scholar
  21. 21.
    Kuo TC (2013) Mass customization and personalization software development: a case study eco-design product service system. J Intell Manuf 24:1019–1031. CrossRefGoogle Scholar
  22. 22.
    Tu JC et al (2013) Construction of customization development procedures in product service systems. J Ind Product Eng 30:303–326. CrossRefGoogle Scholar
  23. 23.
    Waltemode S, Mannweiler C, Aurich JC (2012) Life cycle oriented quality assessment of technical product-service systems. Leveraging Technol Sustain World:49–54.
  24. 24.
    Geum Y, Park Y (2011) Designing the sustainable product-service integration: a product-service blueprint approach. J Clean Prod 19:1601–1614. CrossRefGoogle Scholar
  25. 25.
    Dong M, Yang D, Su L (2011) Ontology-based service product configuration system modeling and development. Expert Syst Appl 38:11770–11,786. CrossRefGoogle Scholar
  26. 26.
    Mourtzis D, Fotia S, Vlachou E, Koutoupes A (2017) A lean PSS design and evaluation framework supported by KPI monitoring and context sensitivity tools. Int J Adv Manuf Technol.
  27. 27.
    Sousa-Zomer TT, Miguel PAC (2017) A QFD-based approach to support sustainable product-service systems conceptual design. Int J Adv Manuf Technol 88:701–717. CrossRefGoogle Scholar
  28. 28.
    Monostori L et al (2016) Cyber-physical systems in manufacturing. CIRP Ann Manuf Technol 65:621–641. CrossRefGoogle Scholar
  29. 29.
    Lee J, Bagheri B, Kao H (2015) A cyber-physical systems architecture for Industry 4 .0-based manufacturing systems. Manuf Lett 3:18–23. CrossRefGoogle Scholar
  30. 30.
    Wang S et al (2016) Towards smart factory for industry 4.0: a self-organized multi-agent system with big data base d feedback and coordination. Comput Netw 101:158–168. CrossRefGoogle Scholar
  31. 31.
    Mourtzis D et al (2016) Applications for frugal product customization and design of manufacturing networks. Procedia CIRP 52:228–233. CrossRefGoogle Scholar
  32. 32.
    Mourtzis D et al (2016) Cloud-based adaptive process planning considering availability and capabilities of machine tools. J Manuf Syst 39:1–8. CrossRefGoogle Scholar
  33. 33.
    Bajestani MA, Banjevic D, Beck JC (2014) Integrated maintenance planning and production scheduling with Markovian deteriorating machine conditions. Int J Product Res Taylor Francis 52:7377–7400. CrossRefGoogle Scholar
  34. 34.
    Tien JM (2012) The next industrial revolution: integrated services and goods. J Syst Sci Syst Eng 21:257–296. CrossRefGoogle Scholar
  35. 35.
    Renu RS, Mocko G, Koneru A (2013) Use of big data and knowledge discovery to create data backbones for decision support systems. Procedia Comput Sci 20:446–453. CrossRefGoogle Scholar
  36. 36.
    Elmaraghy W et al (2012) Complexity in engineering design and manufacturing. CIRP Annals - Manufacturing Technology. CIRP 61(2):793–814. CrossRefGoogle Scholar
  37. 37.
    Chryssolouris G, Vassiliou E, Mavrikios D (2006) Application of information theory to the quantification of concurrent engineering processes. 13th International Conference on Concurrent Engineering (ISPE) 679–695Google Scholar
  38. 38.
    Efthymiou K et al (2012) Manufacturing systems complexity review: challenges and outlook. Procedia CIRP 3:644–649. CrossRefGoogle Scholar
  39. 39.
    ElMaraghy H et al (2013) Product variety management. CIRP Ann Manuf Technol 62:629–652. CrossRefGoogle Scholar
  40. 40.
    Mourtzis D, Fotia S, Boli N (2017) Metrics definition for the product-service system complexity within mass customization and industry 4.0 environment. ICE IEEE 2017 International Conference on Engineering, Technology and Innovation (ICE/ITMC) 1207–1213Google Scholar
  41. 41.
    Mourtzis D, Fotia S, Boli N, Vlachou E (2017) An approach for the modeling and quantification of PSS customisation. Int J Prod Res:1–17.
  42. 42.
    Erkoyuncu JA et al (2011) Understanding service uncertainties in industrial product-service system cost estimation. Int J Adv Manuf Technol 52:1223–1238. CrossRefGoogle Scholar
  43. 43.
    Alexopoulos K, Koukas S, Boli N, Mourtzis D (2017) Resource planning for the installation of industrial product service systems. Adv Product Manag Syst:205–213.

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Dimitris Mourtzis
    • 1
    Email author
  • Sophia Fotia
    • 1
  • Nikoletta Boli
    • 1
  • Pietro Pittaro
    • 2
  1. 1.Laboratory for Manufacturing Systems and Automation, Department of Mechanical Engineering and AeronauticsUniversity of PatrasPatrasGreece
  2. 2.PRIMA INDUSTRIE S.p.ACollegnoItaly

Personalised recommendations