Performance of diamond drill bits with hybrid nanoreinforced Fe-Ni-Mo binder

  • P. A. LoginovEmail author
  • D. A. Sidorenko
  • M. Ya. Bychkova
  • A. A. Zaitsev
  • E. A. Levashov


In this study, the possibility of applying novel Fe-Ni-Mo-based alloys in diamond tool binders is shown. Nanoparticles of tungsten carbide, hexagonal boron nitride, and carbon nanotubes were used for binder reinforcement. It is established that simultaneous addition of all three types of nanoparticles allows one to achieve the highest mechanical and tribological properties of Fe-Ni-Mo alloy. The machining tests of drill bits equipped with experimental binders demonstrated that nanoparticle reinforcement enhances wear resistance of tools, their service life, and diamond retention within the working layer. Furthermore, an analysis of the tool surface and diamond condition after tests showed a good correlation between binder strength and diamond retention capacity. The positive role played by tungsten carbide nanoparticles involves both Orowan strengthening of the binder and a better chemical bonding at the binder–diamond interphase.


Diamond tool Drill bit Diamond Powder metallurgy Hot pressing Strengthening Metal matrix composite Nanoparticles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Funding information

This work was supported by the Russian Science Foundation (grant no. 17-79-20384) in the part of manufacturing compacted samples of diamond-containing materials with nanomodified hybrid binders and by the Russian Foundation of Basic Research (grant no. 16-08-01180) in the part of investigating the effect of WC nanoparticles on diamond adhesion to the binder.


  1. 1.
    Konstanty J Powder metallurgy diamond tools. Elsevier. OxfordGoogle Scholar
  2. 2.
    Scott TA (2018) The influence of microstructure on the mechanical properties of polycrystalline diamond: a literature review. Adv Appl Ceram 117:161–176CrossRefGoogle Scholar
  3. 3.
    Deng H, Deng Z, Li S (2017) The grinding performance of a laser-dressed bronze-bonded diamond grinding wheel. Int J Adv Manuf Technol 88:1789–1798CrossRefGoogle Scholar
  4. 4.
    Henriques B, Ferreira P, Buciumeanu M, Fredel M, Cabral A, Silva FS, Miranda G (2017) Copper–nickel-based diamond cutting tools: stone cutting evaluation. Int J Adv Manuf Technol 92:1339–1348CrossRefGoogle Scholar
  5. 5.
    Zhou C, Deng H, Chen G, Wang Y, He J, Du H (2016) Study of the grinding performance of laser-trued and dressed bronzed-bonded diamond grinding wheels. Int J Adv Manuf Technol 85:2797–2803CrossRefGoogle Scholar
  6. 6.
    Miranda G, Ferreira P, Buciumeanu M, Cabral A, Fredel M, Silva FS, Henriques B (2017) Microstructure, mechanical and wear behaviors of hot-pressed copper-nickel-based materials for diamond cutting tools. J Mater Eng Perform 26:4046–4055CrossRefGoogle Scholar
  7. 7.
    Zhao X, Duan L (2018) A review of the diamond retention capacity of metal bond matrices. Metals-Basel 8:307CrossRefGoogle Scholar
  8. 8.
    Bogatyreva GP, Nevstruev GF, Il'nitskaya GD, Tkach VN (2001) The possibilities for improvement of the strength of diamond grit retention in a binder. Sverkhtverdye Materialy 2:20–25Google Scholar
  9. 9.
    Polushin NI, Ovchinnikova MS, Maslov AL (2014) The use of alumina nanoparticles as modifiers of galvanic binder of diamond tools. Adv Mater Res 1040:199–201CrossRefGoogle Scholar
  10. 10.
    Li S, Han Z, Meng Q, Zhao X, Cao X, Liu B (2018) Effect of WC nanoparticles on the microstructure and properties of WC-bronze-Ni-Mn based diamond composites. Appl Sci-Basel 8:1501CrossRefGoogle Scholar
  11. 11.
    Konstanty J (2013) Sintered diamond tools: trends, challenges and prospects. Powder Metall 56:184–188CrossRefGoogle Scholar
  12. 12.
    Konstanty J, Bunsch A (1991) Hot pressing of cobalt powders. Powder Metall 34:195–198CrossRefGoogle Scholar
  13. 13.
    Kamphuis B, Serneels A (2004) Cobalt and nickel free bond powder for diamond tools: Cobalite® CNF. Ind Diam Rev 64:26–27Google Scholar
  14. 14.
    Barbosa AP, Bobrovnitchii GS, Skury ALD, Guimarães RS, Filgueira M (2010) Structure, microstructure and mechanical properties of PM Fe-Cu-Co alloys. Mater Des 31:522–526CrossRefGoogle Scholar
  15. 15.
    Hwang KS, Yang TH, Hu SC (2005) Diamond cutting tools with a Ni3Al matrix processed by reaction pseudo-hipping. Metall Mater Trans A 36:2801–2806CrossRefGoogle Scholar
  16. 16.
    Spriano S, Chen Q, Settineri L, Bugliosi S (2005) Low content and free cobalt matrixes for diamond tools. Wear 259:1190–1196CrossRefGoogle Scholar
  17. 17.
    Costa MM, Flores P, Pereira D, Buciumeanu M, Cabral A, Fredel M, Silva FS, Henriques B, Miranda G (2018) Nickel-cobalt-based materials for diamond cutting tools. Int J Adv Manuf Technol 95:1059–1067CrossRefGoogle Scholar
  18. 18.
    Konstanty JS, Tyrala D (2013) Wear mechanism of iron-base diamond-impregnated tool composites. Wear 303:533–540CrossRefGoogle Scholar
  19. 19.
    Loginov PA, Sidorenko DA, Shvyndina NV, Sviridova TA, Churyumov AY, Levashov EA (2019) Effect of Ti and TiH2 doping on mechanical and adhesive properties of Fe-Co-Ni binder to diamond in cutting tools. Int J Refract Met H 79:69–78CrossRefGoogle Scholar
  20. 20.
    Sánchez Egea AJ, Martynenko V, Martínez Krahmer D, López de Lacalle LN, Benítez A, Genovese G (2018) On the cutting performance of segmented diamond blades when dry-cutting concrete. Materials 11:264CrossRefGoogle Scholar
  21. 21.
    Wang L, Guo S, Gao J, Yang L, Hu T, Peng J, Hou M, Jiang C (2017) Microwave sintering behavior of FeCuCo based metallic powder for diamond alloy tool bit. J Alloys Compd 727:94–99CrossRefGoogle Scholar
  22. 22.
    Bączek E, Konstanty J, Romański A, Podsiadło M, Cyboroń J (2018) Processing and characterization of Fe-Mn-Cu-Sn-C alloys prepared by ball milling and spark plasma sintering. J Mater Eng Perform 27:1475–1483CrossRefGoogle Scholar
  23. 23.
    De Oliveira HCP, Coelho A, Amaral PM, Fernandes JC, Guerra Rosa L (2013) Comparison between cobalt and niobium as a matrix component for diamond impregnated tools used for stone cutting. Key Eng Mater 548:98–105CrossRefGoogle Scholar
  24. 24.
    Loginov PA, Sidorenko DA, Levashov EA, Petrzhik MI, Bychkova MYa, Mishnaevsky L Jr (2018) Hybrid metallic nanocomposites for extra wear-resistant diamond machining tools. Int J Refract Met Hard Mater 71:36–44Google Scholar
  25. 25.
    Huang YS, Qiu WQ, Luo CP (2005) Effect of molybdenum on diamond deposition and adhesion. Thin Solid Films 472:20–25CrossRefGoogle Scholar
  26. 26.
    Tokova LV, Zaitsev AA, Kurbatkina VV, Levashov EA, Sidorenko DA, Andreev VA (2014) The features of influence of ZrO2 and WC nanodispersed additives on the properties of metal matrix composite. Russ J Non-Ferr Met 55:186–190CrossRefGoogle Scholar
  27. 27.
    Sidorenko D, Loginov P, Mishnaevsky L Jr, Levashov E (2017) Nanocomposites for machining tools. Materials 10:1171CrossRefGoogle Scholar
  28. 28.
    Leinenbach C, Transchel R, Gorgievski K, Kuster F, Elsener HR, Wegener K (2015) Microstructure and mechanical performance of Cu-Sn-Ti-based active braze alloy containing in situ formed nano-sized TiC particles. J Mater Eng Perform 24:2042–2050CrossRefGoogle Scholar
  29. 29.
    Zhang Z, Chen DL (2008) Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites. Mater Sci Eng A 483–484:148–152CrossRefGoogle Scholar
  30. 30.
    Schultz BF, Ferguson JB, Rohatgi PK (2011) Microstructure and hardness of Al2O3 nanoparticle reinforced Al–Mg composites fabricated by reactive wetting and stir mixing. Mater Sci Eng A 530:87–97CrossRefGoogle Scholar
  31. 31.
    Sidorenko DA, Zaitsev AA, Kirichenko AN, Levashov EA, Kurbatkina VV, Loginov PA, Rupasov SI, Andreev VA (2013) Interaction of diamond grains with nanosized alloying agents in metal–matrix composites as studied by Raman spectroscopy. Diam Relat Mater 38:59–62CrossRefGoogle Scholar
  32. 32.
    Loginov PA, Levashov EA, Kurbatkina VV, Zaitsev AA, Sidorenko DA (2015) Evolution of the microstructure of Cu–Fe–Co–Ni powder mixtures upon mechanical alloying. Powder Technol 276:166–174CrossRefGoogle Scholar
  33. 33.
    Sidorenko D, Mishnaevsky L Jr, Levashov E, Loginov P, Petrzhik M (2015) Carbon nanotube reinforced metal binder for diamond cutting tools. Mater Des 83:536–544CrossRefGoogle Scholar
  34. 34.
    Bodunrin MO, Alaneme KK, Chown LH (2015) Aluminium matrix hybrid composites: a review of reinforcement philosophies; mechanical, corrosion and tribological characteristics. J Mater Res Technol 4:434–445CrossRefGoogle Scholar
  35. 35.
    Jeyasimman D, Narayanasamy R, Ponalagusamy R (2015) Role of hybrid reinforcement on microstructural observation, characterization and consolidation behavior of AA 6061 nanocomposite. Adv Powder Technol 26:1171–1182CrossRefGoogle Scholar
  36. 36.
    Sribalaji M, Mukherjee B, Islam A, Keshri AK (2017) Microstructural and mechanical behavior of spark plasma sintered titanium carbide with hybrid reinforcement of tungsten carbide and carbon nanotubes. Mater Sci Eng A 702:10–21CrossRefGoogle Scholar
  37. 37.
    Sun A, Liu J, Jiang CB (2015) Dual-reinforcement (TaCparticle+TaCdendrite)/FeGa magnetostrictive composites. Mater Sci Eng A 639:370–373CrossRefGoogle Scholar
  38. 38.
    Hariharasakthisudhan P, Jose S (2018) Influence of metal powder premixing on mechanical behavior of dual reinforcement (Al2O3 (μm)/Si3N4 (nm)) in AA6061 matrix. J Alloys Compd 731:100–110CrossRefGoogle Scholar
  39. 39.
    Yamaguchi M, Tang DM, Zhi C, Bando Y, Shtansky D, Golberg D (2012) Synthesis, structural analysis and in situ transmission electron microscopy mechanical tests on individual aluminum matrix/boron nitride nanotube nanohybrids. Acta Mater 60:6213–6222CrossRefGoogle Scholar
  40. 40.
    Nazarchuk SN, Bochechka AA, Gavrilova VS, Romanko LA, Belyavina NN, Aleksandrova LI, Tkach VN, Kuz’menko EF, Zabolotnyi SD (2011) The diamond–tungsten carbide polycrystalline composite material. J Superhard Mater 33:1–12CrossRefGoogle Scholar
  41. 41.
    Sidorenko DA, Levashov EA, Kuptsov KA, Loginov PA, Shvyndina NV, Skryleva EA (2017) Conditions for the in-situ formation of carbide coatings on diamond grains during their sintering with Cu-WC binders. Int J Refract Met Hard Mater 69:273–282CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Scientific-Educational Center of SHSNational University of Science and Technology “MISIS”MoscowRussia

Personalised recommendations