Advertisement

Gaussian process regression to predict the morphology of friction-stir-welded aluminum/copper lap joints

  • M. Krutzlinger
  • E. Meltzer
  • M. Muehlegg
  • M. F. Zaeh
ORIGINAL ARTICLE
  • 13 Downloads

Abstract

The joining of materials with different or even competing properties is of high industrial interest regarding resource-efficient production. Friction stir welding (FSW) has been employed to create high-quality joints of dissimilar material combinations. Many studies report both metallurgical bonding and form-fit to be the relevant joining mechanisms. While metallurgical bonding is driven by interdiffusion and occurs in almost every case, form-fit can only appear if the interface is deformed. The hooks of the deformed interface cause interlocking; however, they also result in an increased stress concentration. Hence, the hooking can either enhance or reduce the joint strength depending on their geometries. This study demonstrates an approach to predict the morphology of the cross-sectional interfacial area of friction-stir-welded multi-material joints. Image processing was used to convert cross sections of aluminum/copper lap joints into binary b/w images. Using Gaussian process regression, a data-driven model of the interfacial area’s morphology was constructed based on 13 data sets. The applicability of the resulting Gaussian process model was tested for seven data sets by comparing the algorithm’s morphological predictions with cross sections welded with test parameters that were not used for training. This allows to estimate, which joining mechanism is relevant or dominant for the overall joint strength. The predicted results agreed well with the actual cross sections. Recesses as well as hooks at the interfacial area were successfully predicted even for a limited number of training data. To enhance the space of possible uses of the model for subsequent applications (e.g., simulation of fracture mechanics), more input parameters can be implemented into the model.

Keywords

Friction stir welding Gaussian process regression Dissimilar materials Image processing Aluminum/copper lap joints 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The research project “Mechanisms in joining of dissimilar materials by friction stir welding” is part of the priority program 1640 (SPP1640) “Joining by plastic deformation,” which is funded by the German Research Foundation (DFG). The authors would like to thank for the funding and the support. The authors would also like to thank Roland Marstatt from the Chair of Experimental Physics I of the University of Augsburg for the preparation of the cross sections, which were used in this study.

References

  1. 1.
    Kumar N, Yuan W, Mishra RS (2015) Friction stir welding of dissimilar alloys and materials. Butterworth-Heinemann (an imprint of Elsevier), Oxford, UK. 978-0-12-802418-8Google Scholar
  2. 2.
    Ben-Artzy A, Munitz A, Kohn G, Bronfin B, Shtechman A (2002) Joining of light hybrid constructions made of magnesium and aluminum alloys. TMS Annual Meeting: 295–302Google Scholar
  3. 3.
    Murr LE (2010) A review of FSW research on dissimilar metal and alloy systems. J Mater Eng Perform 19:1071–1089.  https://doi.org/10.1007/s11665-010-9598-0 CrossRefGoogle Scholar
  4. 4.
    Strass B, Wagner G, Eifler D (2014) Realization of Al/Mg-Hybrid-Joints by ultrasound supported friction stir welding. Mater Sci Forum 783-786:1814–1819.  https://doi.org/10.4028/www.scientific.net/MSF.783-786.1814 CrossRefGoogle Scholar
  5. 5.
    Thomae M, Wagner G, Strass B, Wolter B, Benfer S, Fuerbeth W (2018) Ultrasound enhanced friction stir welding of aluminum and steel. J Mater Sci & Technol 34:163–172.  https://doi.org/10.1016/j.jmst.2017.10.022 CrossRefGoogle Scholar
  6. 6.
    Chen YC, Nakata K (2008) Friction stir lap joining aluminum and magnesium alloys. Scr Mater 58:433–436.  https://doi.org/10.1016/j.scriptamat.2007.10.033 CrossRefGoogle Scholar
  7. 7.
    Firouzdor V, Kou S (2010) Al-to-Mg friction stir welding. Metall Mater Trans A 41:2914–2935.  https://doi.org/10.1007/s11661-010-0340-1 CrossRefGoogle Scholar
  8. 8.
    Zettler R, da Silva AAM, Rodrigues S, Blanco A, dos Santos JF (2006) Dissimilar Al to Mg Alloy Friction Stir Welds. Adv Eng Mater 8:415–421.  https://doi.org/10.1002/adem.200600030 CrossRefGoogle Scholar
  9. 9.
    Tan S, Zheng F, Chen J, Han J, Wu Y, Peng L (2017) Effects of process parameters on microstructure and mechanical properties of friction stir lap linear welded 6061 aluminum alloy to NZ30K magnesium alloy. J Magnes Alloy 5:56–63.  https://doi.org/10.1016/j.jma.2016.11.005 CrossRefGoogle Scholar
  10. 10.
    Wei Y, Li J, Xiong J, Huang F, Zhang F (2012) Microstructures and mechanical properties of magnesium alloy and stainless steel weld-joint made by friction stir lap welding. Mater &Des 33:111–114.  https://doi.org/10.1016/j.matdes.2011.07.016 CrossRefGoogle Scholar
  11. 11.
    Ross K, Whalen S, Reza-E-Rabby M, Hovanski Y (2017) US patent application No. 15/694,565: Systems and process for joining dissimilar materials and solid-state interlocking joint with intermetallic interface formed thereby. Battelle Memorial InstituteGoogle Scholar
  12. 12.
    Reza-E-Rabby M, Ross K, Overman N R, Olszta MJ, McDonnell M, Whalen SA (2018) Joining thick section aluminum to steel with suppressed FeAl intermetallic formation via friction stir dovetailing. Scr Mater 148:63–67.  https://doi.org/10.1016/j.scriptamat.2018.01.026 CrossRefGoogle Scholar
  13. 13.
    Cederqvist L, Reynolds AP (2000) Properties of friction stir welded aluminum lap joints. TWI Ltd., CambridgeGoogle Scholar
  14. 14.
    Ericsson M, Jin L, Sandstrom R (2007) Fatigue properties of friction stir overlap welds. Intern J Fatigue 29:57–68.  https://doi.org/10.1016/j.ijfatigue.2006.02.052 CrossRefGoogle Scholar
  15. 15.
    Giera A, Merklein M, Baumeister P (2007) Laser-assisted friction stir welding of dissimilar steel and aluminum alloys. In: Proceedings of the 2nd ICNFT. Bremen, Germany, September 20–21. BIAS Verlag, Bremen, pp 421–430Google Scholar
  16. 16.
    Coelho RS, Kostka A, dos Santos JF, Kaysser-Pyzalla A (2012) Friction-stir dissimilar welding of aluminium alloy to high strength steels: Mechanical properties and their relation to microstructure. Mater Sci Eng: A 556:175–183.  https://doi.org/10.1016/j.msea.2012.06.076 CrossRefGoogle Scholar
  17. 17.
    Shen Z, Chen Y, Haghshenas M, Gerlich AP (2015) Role of welding parameters on interfacial bonding in dissimilar steel/aluminum friction stir welds. Inter J Eng Sci Technol 18:270–277.  https://doi.org/10.1016/j.jestch.2014.12.008 CrossRefGoogle Scholar
  18. 18.
    Dressler U, Biallas G, Alfaro Mercado U (2009) Friction stir welding of titanium alloy TiAl6V4 to aluminium alloy AA2024-T3. Mater Sci Eng: A 526:113–117.  https://doi.org/10.1016/j.msea.2009.07.006 CrossRefGoogle Scholar
  19. 19.
    Chen YC, Nakata K (2009) Microstructural characterization and mechanical properties in friction stir welding of aluminum and titanium dissimilar alloys. Mater & Des 30:469–474.  https://doi.org/10.1016/j.matdes.2008.06.008 CrossRefGoogle Scholar
  20. 20.
    Chen Y, Liu C, Liu G (2011) Study on the joining of titanium and aluminum dissimilar alloys by friction stir welding. Open Mater Sci J 5:256–261CrossRefGoogle Scholar
  21. 21.
    Chen Y-H, Ni Q, Ke L-M (2012) Interface characteristic of friction stir welding lap joints of Ti/Al dissimilar alloys. Trans Nonferrous Met Soc China 22:299–304.  https://doi.org/10.1016/S1003-6326(11)61174-6 CrossRefGoogle Scholar
  22. 22.
    Krutzlinger M, Marstatt R, Suenger S, Luderschmid J, Zaeh MF, Haider F (2014) Formation of joining mechanisms in friction stir welded dissimilar Al-Ti lap joints. Adv Mater Res 966–967: 510–520.  https://doi.org/10.4028/www.scientific.net/AMR.966-967.510 CrossRefGoogle Scholar
  23. 23.
    Chen ZW, Yazdanian S (2015) Microstructures in interface region and mechanical behaviours of friction stir lap Al6060 to Ti–6Al–4V welds. Mater Sci Eng: A 634:37–45.  https://doi.org/10.1016/j.msea.2015.03.017 CrossRefGoogle Scholar
  24. 24.
    Song Z, Nakata K, Wu A, Liao J, Zhou L (2014) Influence of probe offset distance on interfacial microstructure and mechanical properties of friction stir butt welded joint of Ti6Al4V and A6061 dissimilar alloys. Mater & Des 57:269–278.  https://doi.org/10.1016/j.matdes.2013.12.040 CrossRefGoogle Scholar
  25. 25.
    Galvão I, Loureiro A, Verdera D, Gesto D, Rodrigues DM (2012) Influence of tool offsetting on the structure and morphology of dissimilar aluminum to copper friction-stir welds. Metall Mater Trans A 43:5096–5105.  https://doi.org/10.1007/s11661-012-1351-x CrossRefGoogle Scholar
  26. 26.
    Xue P, Ni DR, Wang D, Xiao BL, Ma ZY (2011) Effect of friction stir welding parameters on the microstructure and mechanical properties of the dissimilar Al–Cu joints. Mater Sci Eng A 528:4683–4689.  https://doi.org/10.1016/j.msea.2011.02.067 CrossRefGoogle Scholar
  27. 27.
    Carlone P, Astarita A, Palazzo GS, Paradiso V, Squillace A (2015) Microstructural aspects in Al–Cu dissimilar joining by FSW. Inter J Adv Manuf Technol 79:1109–1116.  https://doi.org/10.1007/s00170-015-6874-z CrossRefGoogle Scholar
  28. 28.
    Saeid T, Abdollah-zadeh A, Sazgari B (2010) Weldability and mechanical properties of dissimilar aluminum–copper lap joints made by friction stir welding. J Alloys Compd 490:652–655.  https://doi.org/10.1016/j.jallcom.2009.10.127 CrossRefGoogle Scholar
  29. 29.
    Regensburg A, Schürer R, Weigl M, Bergmann J (2018) Influence of pin length and electrochemical platings on the mechanical strength and macroscopic defect formation in stationary shoulder friction stir welding of aluminium to copper. Metals, 8.  https://doi.org/10.3390/met8020085
  30. 30.
    Avettand-Fènoël M-N, Taillard R, Herbelot C, Imad A (2010) Structure and mechanical properties of friction stirred beads of 6082-T6 Al alloy and pure copper. Mat Sci Forum 638–642:1209–1214.  https://doi.org/10.4028/www.scientific.net/MSF.638-642.1209 CrossRefGoogle Scholar
  31. 31.
    Avettand-Fènoël M-N, Taillard R, Ji G (2012) Quality of interfaces in Cu/Al dissimilar friction-stirred welds. Mat Sci Forum 706–709:959–964.  https://doi.org/10.4028/www.scientific.net/MSF.706-709.959 CrossRefGoogle Scholar
  32. 32.
    Goran D, Avettand-Fènoël M-N, Taillard R (2011) Texture and microstructure evolution in friction stir welded Cu-Al sheets characterized by EBSD. Mat Sci Forum 702–703:574–577.  https://doi.org/10.4028/www.scientific.net/MSF.702-703.574 CrossRefGoogle Scholar
  33. 33.
    Galvão I, Loureiro A, Verdera D, Gesto D, Rodrigues DM (2012) Influence of tool offsetting on the structure and morphology of dissimilar aluminum to copper friction-stir welds. Metall Mater Trans A 43A:5069–5105.  https://doi.org/10.1007/s11661-012-1351-x Google Scholar
  34. 34.
    Tan CW, Jiang ZG, Li LQ, Chen YB, Chen XY (2013) Microstructural evolution and mechanical properties of dissimilar Al–Cu joints produced by friction stir welding. Mater & Des 51:466–473.  https://doi.org/10.1016/j.matdes.2013.04.056 CrossRefGoogle Scholar
  35. 35.
    Abdollah-Zadeh A, Saeid T, Sazgari B (2008) Microstructural and mechanical properties of friction stir welded aluminum/copper lap joints. J Alloys Compd 460:535–538.  https://doi.org/10.1016/j.jallcom.2007.06.009 CrossRefGoogle Scholar
  36. 36.
    Galvão I, Verdera D, Gesto D, Loureiro A, Rodrigues DM (2013) Influence of aluminium alloy type on dissimilar friction stir lap welding of aluminium to copper. J Mater Process Technol 213:1920–1928.  https://doi.org/10.1016/j.jmatprotec.2013.05.004 CrossRefGoogle Scholar
  37. 37.
    Galvão I, Loureiro A, Rodrigues DM (2016) Critical review on friction stir welding of aluminium to copper. Sci Technol Weld Join 21:523–546.  https://doi.org/10.1080/13621718.2015.1118813 CrossRefGoogle Scholar
  38. 38.
    Xue P, Xiao BL, Ma ZY (2015) Effect of interfacial microstructure evolution on mechanical properties and fracture behavior of friction stir-welded Al-Cu joints. Metall Mater Trans A 46:3091–3103.  https://doi.org/10.1007/s11661-015-2909-1 CrossRefGoogle Scholar
  39. 39.
    Marstatt R, Krutzlinger M, Luderschmid J, Zaeh MF, Haider F (2017) Formation of a diffusion-based intermetallic interface layer in friction stir welded dissimilar Al-Cu lap joints. IOP Conference Ser: Mater Sci Eng 181:12002.  https://doi.org/10.1088/1757-899X/181/1/012002 CrossRefGoogle Scholar
  40. 40.
    Zhang W, Shen Y, Yan Y, Guo R, Guan W, Guo G (2018) Microstructure characterization and mechanical behavior of dissimilar friction stir welded Al/Cu couple with different joint configurations. Inter J Adv Manuf Technol 94:1021–1030.  https://doi.org/10.1007/s00170-017-0961-2 CrossRefGoogle Scholar
  41. 41.
    Marstatt R, Krutzlinger M, Luderschmid J, Costanzi G, Mueller JFJ, Haider F, Zaeh MF (2018) Intermetallic layers in temperature controlled friction stir welding of dissimilar Al-Cu-joints. IOP Conference Ser: Mater Sci Eng 373:12017.  https://doi.org/10.1088/1757-899X/373/1/012017 CrossRefGoogle Scholar
  42. 42.
    Bachmann A, Gamper J, Krutzlinger M, Zens A, Zaeh MF (2017) Adaptive model-based temperature control in friction stir welding. Inter J Adv Manuf Technol 93:1157–1171.  https://doi.org/10.1007/s00170-017-0594-5 CrossRefGoogle Scholar
  43. 43.
    Yang K, Keat Gan S, Sukkarieh S (2013) A Gaussian process-based RRT planner for the exploration of an unknown and cluttered environment with a UAV. Adv Robot 27:431–443.  https://doi.org/10.1080/01691864.2013.756386 CrossRefGoogle Scholar
  44. 44.
    Schneider M, Ertel W (2010) Robot Learning by Demonstration with local Gaussian process regression. In: 2010 IEEE/RSJ international conference on intelligent robots and systems (IROS), Taipei, Taiwan, October 18–22, 2010. Piscataway Township, USA. 255–260.  https://doi.org/10.1109/IROS.2010.5650949
  45. 45.
    Sterling D, Sterling T, Zhang YM, Chen H (2015) Welding Parameter Optimization Based on Gaussian Process Regression Bayesian Optimization Algorithm. In: 2015 IEEE international conference on automation science and engineering (CASE). Gothenburg, Sweden, August 24–28, 2015. Piscataway Township, USA. 1490–1496.  https://doi.org/10.1109/CoASE.2015.7294310
  46. 46.
    Dong H, Cong M, Liu Y, Zhang Y, Chen H (2016) Predicting characteristic performance for arc welding process. In: 2016 IEEE international conference on cyber technology in automation, control, and intelligent systems (CYBER). Chengdu, China, June 19–22, 2016. Piscataway Township, USA. 7–12.  https://doi.org/10.1109/CYBER.2016.7574786
  47. 47.
    Dong H, Cong M, Zhang Y, Liu Y, Chen H (2018) Modeling and real-time prediction for complex welding process based on weld pool. Inter J Adv Manuf Technol 86.  https://doi.org/10.1007/s00170-018-1685-7
  48. 48.
    Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Cambridge, p 0262035618zbMATHGoogle Scholar
  49. 49.
    Bishop CM (2009) Pattern recognition and machine learning, 8th edn. Springer, New York, p 0387310738Google Scholar
  50. 50.
    Snelson EL (2007) Flexible and efficient Gaussian process models for machine learning. University College London, DissertationGoogle Scholar
  51. 51.
    Rasmussen CE, Williams CKI (2006) Gaussian processes for machine learning, 3rd edn. MIT Press, Cambridge, p 026218 253XGoogle Scholar
  52. 52.
    Duvenaud DK (2014) Automatic model construction with gaussian processes. University of Cambridge, DissertationGoogle Scholar
  53. 53.
    Park K, Paulino GH (2011) Cohesive zone models: A critical review of traction-separation relationships across fracture surfaces. Appl. Mech. Rev 64(6):60802–1–60802-20.  https://doi.org/10.1115/1.4023110 Google Scholar
  54. 54.
    Casalino G, Guglielmi P, Lorusso VD, Mortello M, Peyre P, Sorgente D (2017) Laser offset welding of AZ31B magnesium alloy to 316 stainless steel. J. Mater. Proc. Techn. 242:49–59.  https://doi.org/10.1016/j.jmatprotec.2016.11.020 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • M. Krutzlinger
    • 1
  • E. Meltzer
    • 1
  • M. Muehlegg
    • 2
  • M. F. Zaeh
    • 1
  1. 1.Institute for Machine Tools and Industrial ManagementTechnical University of Munich (TUM)GarchingGermany
  2. 2.Institute of Flight System DynamicsTechnical University of Munich (TUM)GarchingGermany

Personalised recommendations