Advertisement

Design, numerical simulation, and experimental validation of a novel electromagnetic blank holding system for conventional drawing process

  • Hao Li
  • Qiang WangEmail author
  • Fang He
  • Yayun Zheng
  • Yaqian Sun
ORIGINAL ARTICLE
  • 27 Downloads

Abstract

In this paper, a novel electromagnetic blank holding system (EBHS) for a conventional drawing process is proposed. The system is created to substitute mechanical or hydraulic blank holder force (BHF) with mutually attractive electromagnetic force (EMF). The winding type of electromagnetic coils is determined as a single-coil through numerical simulation. For avoiding the fluctuation of the magnitude of BHF, direct current is chosen to generate BHF. Corresponding magnetic circuit model of the electromagnetic blank holding device (EBHD) has been established to find the mathematical relationship between EMF and input voltage. Besides, several groups of EMF testing data are measured to prove the correction of deduced expression. To validate the feasibility of the novel system, corresponding numerical simulation and experiment have been carried out. It is worth to mention that the cylindrical parts created by simulation and experiment at different BHF agree well with each other. Additionally, the thickness reduction rate of drawn part is controlled at a reasonable level with the application of EBHS, which well validates the effectiveness of the EBHS.

Keywords

Electromagnetic force Blank holder force Numerical simulation Experimental validation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhou BJ, Xu YC (2018) The effect of upper sheet on wrinkling and thickness distribution of formed sheet part using double-layer sheet hydroforming. Int J Adv Manuf Technol 99:1175–1182.  https://doi.org/10.1007/s00170-018-2432-9 CrossRefGoogle Scholar
  2. 2.
    Zhao SD, Zhang ZY, Zhang Y, Yuan JH (2007) The study on forming principle in the process of hydro-mechanical reverse deep drawing with axial pushing force for cylindrical cups. J Mater Process Technol 187-188:300–303.  https://doi.org/10.1016/j.jmatprotec.2006.11.198 CrossRefGoogle Scholar
  3. 3.
    Lai ZP, Cao QL, Han XT, Xiong Q, Deng FX, Zhang X, Chen Q, Li L (2016) Design, implementation, and testing of a pulsed electromagnetic blank holder system. IEEE Trans Appl Supercond 26(4):1–5.  https://doi.org/10.1109/TASC.2016.2526028 CrossRefGoogle Scholar
  4. 4.
    Lai ZP, Cao QL, Zhang B, Han XT, Zhou ZY, Xiong Q, Zhang X, Chen Q, Li L (2015) Radial Lorentz force augmented deep drawing for large drawing ratio using a novel dual-coil electromagnetic forming system. J Mater Process Technol 222:13–20.  https://doi.org/10.1016/j.jmatprotec.2015.02.029 CrossRefGoogle Scholar
  5. 5.
    Lai ZP, Cao QL, Han XT, Huang YJ, Deng FX, Chen Q, Li L (2017) Investigation on plastic deformation behavior of sheet workpiece during radial Lorentz force augmented deep drawing process. J Mater Process Technol 245:193–206.  https://doi.org/10.1016/j.jmatprotec.2017.02.010 CrossRefGoogle Scholar
  6. 6.
    Lai ZP, Cao QL, Han XT, Zhou ZY, Xiong Q, Zhang X, Chen Q, Li L (2014) Radial-axial force controlled electromagnetic sheet deep drawing: electromagnetic analysis. 11th International Conference on Technology of Plasticity (ICTP 2014), October 2014, Procedia Engineering 81:2505–2511.  https://doi.org/10.1016/j.proeng.2014.10.358
  7. 7.
    Deng FX, Cao QL, Han XT, Li L (2018) Electromagnetic pulse spot welding of aluminum to stainless steel sheets with a field shaper. Int J Adv Manuf Technol 95:2681–2690.  https://doi.org/10.1007/s00170-018-2208-2 CrossRefGoogle Scholar
  8. 8.
    Cao QL, Han XT, Lai ZP, Xiong Q, Zhang X, Chen Q, Xiao HX, Li L (2015) Analysis and reduction of coil temperature rise in electromagnetic forming. J Mater Process Technol 225:185–194.  https://doi.org/10.1016/j.jmatprotec.2015.02.006 CrossRefGoogle Scholar
  9. 9.
    Huang YJ, Han XT, Cao QL, Lai ZP, Cai H, Liu N, Li XX, Chen M, Li L (2017) Design and analysis of a pulsed electromagnetic blankholder system for electromagnetic forming. International Conference on the Technology of Plasticity (ICTP 2017), September 2017, Procedia Engineering 207:347–352.  https://doi.org/10.1016/j.proeng.2017.10.786
  10. 10.
    Seo YR (2008) Electromagnetic blank restrainer in sheet metal forming processes. Int J Mech Sci 50:743–751.  https://doi.org/10.1016/j.ijmecsci.2007.11.008 CrossRefGoogle Scholar
  11. 11.
    Su HL, Huang L, Li JJ, Li GD, Huang P (2017) Investigation on the forming process and the shape control in electromagnetic flanging of aluminum alloy. International Conference on the Technology of Plasticity (ICTP 2017), September 2017, Procedia Engineering 207:335–366.  https://doi.org/10.1016/j.proeng.2017.10.784
  12. 12.
    Fan S, Mo JH, Fang JX, Xie J (2018) Electromagnetic pulse-assisted incremental drawing forming of aluminum alloy cylindrical part and its control strategy. Int J Adv Manuf Technol 95:2681–2690.  https://doi.org/10.1007/s00170-017-1245-6 CrossRefGoogle Scholar
  13. 13.
    Fang JX, Mo JH, Li JJ, Cui XH, Fan S (2014) Electromagnetic pulse assisted progressive deep drawing. 11th International Conference on Technology of Plasticity (ICTP 2014), October 2014, Procedia Engineering 81:801–807.  https://doi.org/10.1016/j.proeng.2014.10.079
  14. 14.
    Cui XH, Mo JH, Fang JX, Li JJ (2014) Deep drawing of cylindrical cup using incremental electromagnetic assisted stamping with radial magnetic pressure. 11th International Conference on Technology of Plasticity (ICTP 2014), October 2014, Procedia Engineering 81:813–818.  https://doi.org/10.1016/j.proeng.2014.10.081
  15. 15.
    Fang JX, Mo JH, Cui XH, Li JJ, Zhou B (2016) Electromagnetic pulse-assisted incremental drawing of aluminum cylindrical cup. J Mater Process Technol 238:395–408.  https://doi.org/10.1016/j.jmatprotec.2016.07.029 CrossRefGoogle Scholar
  16. 16.
    Cui XH, Li JJ, Mo JH, Fang JX, Zhu YT, Zhong K (2015) Investigation of large sheet deformation process in electromagnetic incremental forming. Mater Des 76:86–96.  https://doi.org/10.1016/j.matdes.2015.03.060 CrossRefGoogle Scholar
  17. 17.
    Cui XH, Mo JH, Li JJ, Xiao XT, Zhou B, Fang JX (2016) Large-scale sheet deformation process by electromagnetic incremental forming combined with stretch forming. J Mater Process Technol 237:139–154.  https://doi.org/10.1016/j.jmatprotec.2016.06.004 CrossRefGoogle Scholar
  18. 18.
    Cui XH, Mo JH, Li JJ, Zhao J, Zhu Y, Huang L, Li ZW, Zhong K (2014) Electromagnetic incremental forming (EMIF): a novel aluminum alloy sheet and tube forming technology. J Mater Process Technol 214:409–427.  https://doi.org/10.1016/j.jmatprotec.2013.05.024 CrossRefGoogle Scholar
  19. 19.
    Cui XH, Yu HL, Wang QS (2018) Reduction of corner radius of cylindrical parts by magnetic force under various loading methods. Int J Adv Manuf Technol 97:2667–2674.  https://doi.org/10.1007/s00170-018-2111-x CrossRefGoogle Scholar
  20. 20.
    Wang QX, Wu ZF, Wang DQ, Fu XY (2017) Study of measurement method for large imbalance evaluation based on dynamic electromagnetic force. Measurement 104:142–150.  https://doi.org/10.1016/j.measurement.2017.03.020 CrossRefGoogle Scholar
  21. 21.
    Paese E, Geier M, Homrich RP, Rossi R (2015) A coupled electric-magnetic numerical procedure for determining the electromagnetic force from the interaction of thin metal sheets and spiral coils in the electromagnetic forming process. Appl Math Model 39:309–321.  https://doi.org/10.1016/j.apm.2014.05.032 MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Okoye CN, Jiang JH, Hu ZD (2006) Application of electromagnetic-assisted stamping (EMAS) technique in incremental sheet metal forming. Int J Mach Tool Manu 46:1248–1252.  https://doi.org/10.1016/j.ijmachtools.2006.01.029 CrossRefGoogle Scholar
  23. 23.
    Akbar S, Awan MS, Aleem MA, Sarwar MN, Farooque M (2015) Effect of field intensity on electromagnetic flat sheet forming. Materials Today: Proceedings 2(5):324–5328.  https://doi.org/10.1016/j.matpr.2015.11.044 Google Scholar
  24. 24.
    Guo K, Lei XP, Zhan M, Tan JQ (2017) Electromagnetic incremental forming of integral panel under different discharge conditions. J Manuf Process 28:373–382.  https://doi.org/10.1016/j.jmapro.2017.01.010 CrossRefGoogle Scholar
  25. 25.
    Shang JH, Daehn G (2011) Electromagnetically assisted sheet metal stamping. J Mater Process Technol 211:868–874.  https://doi.org/10.1016/j.jmatprotec.2010.03.005 CrossRefGoogle Scholar
  26. 26.
    Arumugam P, ShanmugaSundaram K, KamalaKannan N (2014) Experimental study of electromagnetic sheet metal forming process. 12th Global Congress on Manufacturing and Management (GCMM 2014), Procedia Engineering 97:277–290.  https://doi.org/10.1016/j.proeng.2014.12.251
  27. 27.
    Long AL, Wan M, Wang WP, Wu XD, Cui XX, Ma BL (2017) Forming methodology and mechanism of a novel sheet metal forming technology-electromagnetic superposed forming (EMSF). Int J Solids Struct 151:1–16.  https://doi.org/10.1016/j.ijsolstr.2017.11.003 Google Scholar
  28. 28.
    Li S, Cui XY, Li GY (2018) Modelling and demonstration of electromagnetically assisted stamping system using an interactive mapping method. Int J Mech Sci 144:312–323.  https://doi.org/10.1016/j.ijmecsci.2018.06.003 CrossRefGoogle Scholar
  29. 29.
    Liu DH, Li CF, YU HP (2009) Numerical modeling and deformation analysis for electromagnetically assisted deep drawing of AA5052 sheet. Trans Nonferrous Metals Soc China 19:1294–1302.  https://doi.org/10.1016/S1003-6326(08)60441-0 CrossRefGoogle Scholar
  30. 30.
    Cui XL, Zhan M, Gao PF, Ma F, Guo J, Li R, Li ZX, Zhang HR (2018) Influence of blank thickness fluctuation on flange state and final thickness distribution in the power spinning of thin-walled head. Int J Adv Manuf Technol 99:363–372.  https://doi.org/10.1007/s00170-018-2486-8 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Hao Li
    • 1
  • Qiang Wang
    • 1
    Email author
  • Fang He
    • 2
  • Yayun Zheng
    • 2
  • Yaqian Sun
    • 1
  1. 1.School of Mechanical EngineeringUniversity of JinanJinanChina
  2. 2.School of Electrical EngineeringUniversity of JinanJinanChina

Personalised recommendations