A hybrid approach for automatic parting curve generation in injection mold design

ORIGINAL ARTICLE
  • 92 Downloads

Abstract

Automatic parting curve generation plays an important role in the realization of automatic injection mold design. We propose a hybrid visibility-based and graph-based approach to generate the parting curves of a solid part automatically. The approach consists of three steps: (i) construct a graph representation of the solid part, (ii) recognize mold piece region, and (iii) generate parting curve. In step (i), the surface visibility and edge convexity-concavity are attached to the graph. Visibility determination algorithms for various surface types and edge convexity-concavity calculation methods are also discussed. In step (ii), part surfaces are classified into concave-edge regions, inner-loop regions, and isolated surfaces. Concave-edge regions are decomposed into sub concave-edge regions based on graph-based algorithms that have linear time complexity. Concave-edge regions, inner-loop regions, and isolated surfaces are assessed to extract the cavity region, core region, and undercut regions. In step (iii), the boundary edges of each region are extracted to form parting curves. The approach has linear time complexity and is effective for complex solid products with planar surfaces, quadric surfaces, and free-form surfaces. Finally, two case studies are provided to validate the proposed approach.

Keywords

Injection mold design Visibility technique Mold piece region Parting curve 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yin Z, Ding H, Xiong Y (2001) Virtual prototyping of mold design: geometric mouldability analysis for near-net-shape manufactured parts by feature recognition and geometric reasoning. Comput Aided Des 33(2):137–154.  https://doi.org/10.1016/S0010-4485(00)00084-1 CrossRefGoogle Scholar
  2. 2.
    Fu MW, Fuh JYH, Nee AYC (1999) Undercut feature recognition in an injection mould design system. Comput Aided Des 31(12):777–790.  https://doi.org/10.1016/S0010-4485(99)00070-6 CrossRefMATHGoogle Scholar
  3. 3.
    Zhou H, Shi S, Ma B (2008) A virtual injection molding system based on numerical simulation. Int J Adv Manuf Technol 40(3–4):297–306.  https://doi.org/10.1007/s00170-007-1332-1 Google Scholar
  4. 4.
    Priyadarshi AK, Gupta SK (2004) Geometric algorithms for automated design of multi-piece permanent molds. Comput Aided Des 36(3):241–260.  https://doi.org/10.1016/s0010-4485(03)00107-6 CrossRefGoogle Scholar
  5. 5.
    Fu MW, Nee AYC, Fuh JYH (2002) The application of surface visibility and moldability to parting line generation. Comput Aided Des 34(6):469–480.  https://doi.org/10.1016/S0010-4485(01)00117-8 CrossRefGoogle Scholar
  6. 6.
    Guangming L, Hui F, Lixuan Z, Bin Y (2015) Research on optimal design of the injection mold parting direction based on preference relation. Int J Adv Manuf Technol 79(5–8):1027–1034.  https://doi.org/10.1007/s00170-015-6802-2 CrossRefGoogle Scholar
  7. 7.
    Lin AC, Quang NH (2014) Automatic generation of mold-piece regions and parting curves for complex CAD models in multi-piece mold design. Comput Aided Des 57:15–28.  https://doi.org/10.1016/j.cad.2014.06.014 CrossRefGoogle Scholar
  8. 8.
    Li CL (2003) Automatic parting surface determination for plastic injection mould. Int J Prod Res 41(15):3529–3547.  https://doi.org/10.1080/0020754031000098939 CrossRefGoogle Scholar
  9. 9.
    Lee KS, Lin JC (2005) Design of the runner and gating system parameters for a multi-cavity injection mould using FEM and neural network. Int J Adv Manuf Technol 27(11–12):1089–1096.  https://doi.org/10.1007/s00170-004-2287-0 Google Scholar
  10. 10.
    Au KM, Yu KM, Chiu WK (2011) Visibility-based conformal cooling channel generation for rapid tooling. Comput Aided Des 43(4):356–373.  https://doi.org/10.1016/j.cad.2011.01.001 CrossRefGoogle Scholar
  11. 11.
    Ma Y-S, Tor SB, Britton GA (2003) The development of a standard component library for plastic injection mould design using an object-oriented approach. Int J Adv Manuf Technol 22(9–10):611–618.  https://doi.org/10.1007/s00170-003-1555-8 CrossRefGoogle Scholar
  12. 12.
    Mercado-Colmenero JM, Paramio MAR, Perez-Garcia JM, Martin-Doñate C (2016) A new hybrid method for demoldability analysis of discrete geometries. Comput Aided Des.  https://doi.org/10.1016/j.cad.2016.06.006
  13. 13.
    Fu MW, Fuh JYH, Nee AYC (1999) Generation of optimal parting direction based on undercut features in injection molded parts. IIE Trans 31(10):947–955.  https://doi.org/10.1023/A:1007671314408 Google Scholar
  14. 14.
    Chen YH, Wang YZ, Leung TM (2000) An investigation of parting direction based on dexel model and fuzzy decision making. Int J Prod Res 38(6):1357–1375.  https://doi.org/10.1080/002075400188898 CrossRefMATHGoogle Scholar
  15. 15.
    Rubio Paramio MA, Perez Garcia JM, Rios Chueco J, Vizan Idoipe A, Marquez Sevillano JJ (2006) A procedure for plastic parts demoldability analysis. Robot Comput Integr Manuf 22(1):81–92.  https://doi.org/10.1016/j.rcim.2005.02.011 CrossRefGoogle Scholar
  16. 16.
    Lin AC, Quang NH (2016) A multiple slicing approach to automatic generation of parting curves. Proc Inst Mech Eng B J Eng Manuf 230(12):2165–2181.  https://doi.org/10.1177/0954405415585271 CrossRefGoogle Scholar
  17. 17.
    Joshi S, Chang TC (1988) Graph-based heuristics for recognition of machined features from a 3D solid model. Comput Aided Des 20(2):58–66.  https://doi.org/10.1016/0010-4485(88)90050-4 CrossRefMATHGoogle Scholar
  18. 18.
    Ye XG, Fuh JYH, Lee KS (2001) A hybrid method for recognition of undercut features from moulded parts. Comput Aided Des 33(14):1023–1034.  https://doi.org/10.1016/S0010-4485(00)00138-X CrossRefGoogle Scholar
  19. 19.
    Ye XG, Fuh JYH, Lee KS (2004) Automatic undercut feature recognition for side core design of injection molds. J Mech Des 126(3):519–526.  https://doi.org/10.1115/1.1737379 CrossRefGoogle Scholar
  20. 20.
    Yin Z-P, Ding H, Xiong Y-L (2000) Visibility theory and algorithms with application to manufacturing processes. Int J Prod Res 38(13):2891–2909.  https://doi.org/10.1080/00207540050117350 CrossRefGoogle Scholar
  21. 21.
    Tan ST, Yuen MF, Sze WS, Kwong KW (1990) Parting lines and parting surfaces of injection moulded parts. Proc Inst Mech Eng B J Eng Manuf 204(4):211–221.  https://doi.org/10.1243/PIME_PROC_1990_204_060_02 CrossRefGoogle Scholar
  22. 22.
    Chen L-L, Chou S-Y, Woo TC (1993) Parting directions for mould and die design. Comput Aided Des 25(12):762–768.  https://doi.org/10.1016/0010-4485(93)90103-U CrossRefMATHGoogle Scholar
  23. 23.
    Hui KC (1997) Geometric aspects of the mouldability of parts. Comput Aided Des 29(3):197–208.  https://doi.org/10.1016/S0010-4485(96)00064-4 CrossRefGoogle Scholar
  24. 24.
    Chakraborty P, Venkata Reddy N (2009) Automatic determination of parting directions, parting lines and surfaces for two-piece permanent molds. J Mater Process Technol 209(5):2464–2476.  https://doi.org/10.1016/j.jmatprotec.2008.05.051 CrossRefGoogle Scholar
  25. 25.
    Singh R, Madan J (2013) Systematic approach for automated determination of parting line for die-cast parts. Robot Comput Integr Manuf 29(5):346–366.  https://doi.org/10.1016/j.rcim.2013.02.002 CrossRefGoogle Scholar
  26. 26.
    Fu MW (2008) The application of surface demoldability and moldability to side-core design in die and mold CAD. Comput Aided Des 40(5):567–575.  https://doi.org/10.1016/j.cad.2008.02.002 CrossRefGoogle Scholar
  27. 27.
    Bassi R, Reddy NV, Bedi S (2010) Automatic recognition of intersecting features for side core design in two-piece permanent molds. Int J Adv Manuf Technol 50(5–8):421–439.  https://doi.org/10.1007/s00170-010-2524-7 CrossRefGoogle Scholar
  28. 28.
    Bassi R, Bedi S (2013) Image processing-based accessibility analysis method for determining undercut-free parting direction. Int J Adv Manuf Technol 69(5–8):1581–1591.  https://doi.org/10.1007/s00170-013-5129-0 CrossRefGoogle Scholar
  29. 29.
    Huang L, Guo S, Tang H, Li L, Ding K (2017) Design of automatic parting in calibrator CAD for plastic profile extrusion dies via feature recognitions. Int J Adv Manuf Technol 88(5):1319–1331.  https://doi.org/10.1007/s00170-016-8852-5 CrossRefGoogle Scholar
  30. 30.
    Banerjee AG, Gupta SK (2007) Geometrical algorithms for automated design of side actions in injection moulding of complex parts. Comput Aided Des 39(10):882–897.  https://doi.org/10.1016/j.cad.2007.05.014 CrossRefGoogle Scholar
  31. 31.
    Elber G (2001) Curve evaluation and interrogation on surfaces. Graph Model 63(3):197–210.  https://doi.org/10.1006/gmod.2001.0541 CrossRefMATHGoogle Scholar
  32. 32.
    Kyprianou LK (1980) Shape classification in computer-aided design. University of CambridgeGoogle Scholar
  33. 33.
    Ferreira JCE, Hinduja S (1990) Convex hull-based feature-recognition method for 2.5D components. Comput Aided Des 22(1):41–49.  https://doi.org/10.1016/0010-4485(90)90028-b CrossRefGoogle Scholar
  34. 34.
    J D, S V (1997) Manufacturing feature determination and extraction- part II: a heuristic approach. Comput Aided Des 29(7):475–484.  https://doi.org/10.1016/S0010-4485(96)00073-5 CrossRefGoogle Scholar
  35. 35.
    Xu X, Hinduja S (1998) Recognition of rough machining features in 2.5D components. Comput Aided Des 30(7):503–516.  https://doi.org/10.1016/S0010-4485(97)00090-0 CrossRefMATHGoogle Scholar
  36. 36.
    Fu MW, Ong SK, Lu WF, Lee IBH, Nee AYC (2003) An approach to identify design and manufacturing features from a data exchanged part model. Comput Aided Des 35(11):979–993CrossRefGoogle Scholar
  37. 37.
    Mok CK, Wong FSY (2006) Automatic feature recognition for plastic injection moulded part design. Int J Adv Manuf Technol 27(11):1058–1070.  https://doi.org/10.1007/s00170-004-2325-y CrossRefGoogle Scholar
  38. 38.
    Singh R, Madan J, Kumar R (2014) Automated identification of complex undercut features for side-core design for die-casting parts. Proc Inst Mech Eng B J Eng Manuf 228(9):1138–1152.  https://doi.org/10.1177/0954405413514744 CrossRefGoogle Scholar
  39. 39.
    Jong WR, Lai PJ, Chen YW, Ting YH (2015) Automatic process planning of mold components with integration of feature recognition and group technology. Int J Adv Manuf Technol 78(5):807–824.  https://doi.org/10.1007/s00170-014-6627-4 CrossRefGoogle Scholar
  40. 40.
    Tarjan R (1971) Depth-first search and linear graph algorithms. In: 12th Annual Symposium on Switching and Automata Theory (swat 1971), 13–15 Oct. 1971. pp 114–121. doi: https://doi.org/10.1109/SWAT.1971.10
  41. 41.
    Woo TC (1994) Visibility maps and spherical algorithms. Comput Aided Des 26(1):6–16.  https://doi.org/10.1016/0010-4485(94)90003-5 CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Binkui Hou
    • 1
  • Zhigao Huang
    • 1
  • Huamin Zhou
    • 1
  • Dequn Li
    • 1
  1. 1.State Key Laboratory of Material Processing and Die & Mould TechnologyHuazhong University of Science and TechnologyWuhanPeople’s Republic of China

Personalised recommendations