Advertisement

Weldability of marine grade AA 5052 aluminum alloy by underwater friction stir welding

  • 279 Accesses

  • 9 Citations

Abstract

Friction stir welding (FSW) is a solid-state joining process producing high-quality welds with lower residual stresses and improved mechanical properties. Underwater FSW is a variant of FSW process which controls heat conduction and dissipation along the weld line improving the joint properties. The feasibility of underwater friction stir welding of AA 5052 H32 aluminum alloy to improve the joint performance than normal friction stir welding is addressed in this paper. The effects of tool rotational speed and welding speed on ultimate tensile strength by underwater and normal friction stir welding were analyzed and compared. It was observed that the tensile strength of underwater welded joints was higher than normal FSW joints except at 500 rpm. Maximum tensile strength of 208.9 MPa was obtained by underwater friction stir welding at 700 rpm tool rotational speed and welding speed of 65 mm/min. The optimum process parameters for achieving maximum tensile strength by normal FSW were compared with underwater FSW. The result showed that the ultimate tensile strength obtained by underwater FSW was about 2% greater than that of the normal FSW process. The joints with maximum tensile strength during underwater and normal welding fractured at the retreating side of the welded joint. Microstructural examination revealed that heat-affected region was not found in underwater welding. Microhardness was decreased slightly towards the stir zone. Fractography observation revealed that the welded joints exhibiting higher joint efficiency failed under ductile mode.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

References

  1. 1.

    Chen J, Yuan X, Hu Z, Sun C, Zhang Y, Zhang Y (2016) Microstructure and mechanical properties of resistance-spot-welded joints for A5052 aluminum alloy and DP 600 steel. Mater Charact 120:45–52. https://doi.org/10.1016/j.matchar.2016.08.015

  2. 2.

    Zhang R, Knight SP, Holtz RL, Goswami R, Davies CHJ, Birbilis N (2016) A survey of sensitization in 5xxx series aluminum alloys. Corros Sci 72(2):144–159. https://doi.org/10.5006/1787

  3. 3.

    Zhitong Chen, Shengxi Li, Kaimiao Liu, Lloyd H. Hihara arXiv:1511.04990 (2015) A study on the mechanical property and corrosion sensitivity of an AA5086 friction stir welded joint. arXiv e-print (arXiv:1511.04990)

  4. 4.

    Mishra RS, Ma ZY (2005) Friction sir welding and processing. Material Sci Engineering R 50(1-2):1–78. https://doi.org/10.1016/j.mser.2005.07.001

  5. 5.

    Grimm A, Schulze S, Silva A, Gobel G, Standfuss J, Brenner B, Beyer E, Fussel U (2015) Friction stir welding of light metals for industrial applications. Materials Today: Proceedings 2S:169–178. https://doi.org/10.1016/j.matpr.2015.05.007

  6. 6.

    Gibson BT, Lammlein DH, Prater TJ, Longhurst WR, Cox CD, Ballun MC, Dharmaraj KJ, Cook GE, Stauss AM (2014) Friction stir welding: process, automation, and control. J Manufacturing Process 16(1):56–73. https://doi.org/10.1016/j.jmapro.2013.04.002

  7. 7.

    Saravanan V, Rajakumar S, Banerjee N, Amuthakkannan R (2016) Effect of shoulder diameter to pin diameter ratio on microstructure and mechanical properties of dissimilar friction stir welded AA2024-T6 and AA7075-T6 aluminum alloy joints. Int J Adv Manuf Technol 87(9-12):3637–3645. https://doi.org/10.1007/s00170-016-8695-0

  8. 8.

    Elangovan K, Balasubramanian V (2008) Influence of tool pin profile and welding speed on the formation of friction stir processing zone in AA2219 aluminium alloy. J Mater Process Technol 200(1-3):163–175. https://doi.org/10.1016/j.jmatprotec.2007.09.019

  9. 9.

    Ugender S, Kumar A, Somi Reddy A (2014) Experimental investigation of tool geometry on mechanical properties of friction stir welding of AA 2014 aluminium alloy. Procedia Materials Sci 5:824–831. https://doi.org/10.1016/j.mspro.2014.07.334

  10. 10.

    Bayazid SM, Farhangi GA (2015) Effect of pin profile on defects of friction stir welded 7075 aluminum alloy. Procedia Materials Sci 11:12–16. https://doi.org/10.1016/j.mspro.2015.11.013

  11. 11.

    Yue Y, Zhou Z, Ji S, Zhang J, Li Z (2017) Effect of welding speed on joint feature and mechanical properties of friction stir lap welding assisted by external stationary shoulders. Int J Adv Manuf Technol 89(5-8):1691–1698. https://doi.org/10.1007/s00170-016-9240-x

  12. 12.

    Gadakh VS, Adepu K (2013) Heat generation model for taper cylindrical pin profile in FSW. J Materials Res Technol 2(4):370–375. https://doi.org/10.1016/j.jmrt.2013.10.003

  13. 13.

    Liu H, Zhao Y, Hu Y, Chen S, Lin Z (2015) Microstructural characteristics and mechanical properties of friction stir lap welding joint of alclad 7B04-T74 aluminum alloy. Int J Adv Manuf Technol 78(9-12):1415–1425. https://doi.org/10.1007/s00170-014-6718-2

  14. 14.

    Zhang Z, Wu Q (2015) Analytical and numerical studies of fatigue stresses in friction stir welding. Int J Adv Manuf Technol 78(9-12):1371–1380. https://doi.org/10.1007/s00170-014-6749-8

  15. 15.

    Amini S, Amiri MR (2015) Pin axis effects on forces in friction stir welding process. Int J Adv Manuf Technol 78(9-12):1795–1801. https://doi.org/10.1007/s00170-015-6785-z

  16. 16.

    Rajakumar S, Balasubramanian V (2012) Establishing relationships between mechanical properties of aluminium alloys and optimised friction stir welding process parameters. Mater Des 40:17–35. https://doi.org/10.1016/j.matdes.2012.02.054

  17. 17.

    Venkateswarlu D, Mandal NR, Mahapatra MM, Harsh SP (2013) Tool design effects for FSW of AA7039. Weld J 92:41–47

  18. 18.

    Elatharasan G, Senthil Kumar VS (2013) An experimental analysis and optimization of process parameter on friction stir welding of AA 6061-T6 aluminium alloy using RSM. Procedia Engineering 64:1227–1234. https://doi.org/10.1016/j.proeng.2013.09.202

  19. 19.

    Kadaganch R, Gankidi MR, Gokhale H (2015) Optimization of process parameters of aluminum alloy AA 2014-T6 friction stir welds by response surface methodology. Defence Technol 11(3):209–219. https://doi.org/10.1016/j.dt.2015.03.003

  20. 20.

    Lakshminarayanan AK, Balasubramanian V (2009) Comparison of RSM with ANN in predicting tensile strength of friction stir welded AA7039 aluminium alloy joints. Trans Nonferrous Metals Soc China 19(1):9–18. https://doi.org/10.1016/S1003-6326(08)60221-6

  21. 21.

    Jayaraman M, Sivasubramanian R, Balasubramanian V, Lakshminarayanan AK (2009) Application of RSM and ANN to predict the tensile strength of friction stir welded A319 cast aluminum alloy. Int J Manuf Res 4(3):306–323. https://doi.org/10.1504/IJMR.2009.026576

  22. 22.

    Palanivel R, Laubscher RF, Dinaharan I, Murugan N (2016) Tensile strength prediction of dissimilar friction stir-welded AA6351–AA5083 using artificial neural network technique. J Braz Soc Mech Sci Eng 38(6):1647–1657. https://doi.org/10.1007/s40430-015-0483-5

  23. 23.

    Ghetiya ND, Patel KM (2014) Prediction of tensile strength in friction stir welded aluminium alloy using artificial neural network. Procedia Technol 14:274–281. https://doi.org/10.1016/j.protcy.2014.08.036

  24. 24.

    Okuyucu H, Kurt A, Arcaklioglu E (2007) Artificial neural network application to the friction stir welding of aluminum plates. Mater Des 28(1):78–84. https://doi.org/10.1016/j.matdes.2005.06.003

  25. 25.

    Moshwan R, Yusof F, Hassan MA, Rahmat SM (2015) Effect of tool rotational speed on force generation, microstructure and mechanical properties of friction stir welded AA 5052-O alloy. Mater Des 66:118–128. https://doi.org/10.1016/j.matdes.2014.10.043

  26. 26.

    Kwon Y-J, Shim S-B, Park D-H (2009) Friction stir welding of 5052 aluminum alloy plates. Trans Nonferrous Metals Soc China 19:23–27. https://doi.org/10.1016/S1003-6326(10)60239-7

  27. 27.

    Ramachandran KK, Murugan N, Shashi kumar S (2015) Friction stir welding of aluminum alloy AA5052 and HSLA steel. Weld J 94:291–300

  28. 28.

    Shanavas S, Edwin Raja Dhas J (2017) Modeling and analysis of friction stir welding and underwater friction stir welding of aluminium alloy: a review. Appl Mech Mater 867:127–133. https://doi.org/10.4028/www.scientific.net/AMM.867.127

  29. 29.

    Sarukada D, Katoh K, Tokisue H (2002) Underwater friction welding of 6061 aluminum alloy. J Japan Institute Light Metals 52:2–6. https://doi.org/10.2464/jilm.52.2

  30. 30.

    Sabari Sree S, Malarvizhi S, Balasubramanian V, Madusudahan Reddy G (2016) Experimental and numerical investigation on under-water friction stir welding of armour grade AA2519-T87 aluminium alloy. Defence Technol 12(4):324–333. https://doi.org/10.1016/j.dt.2016.02.003

  31. 31.

    Wang Q, Zhao Z, Zhao Y, Yan K, Liu C, Zhang H (2016) The strengthening mechanism of spray forming Al-Zn-Mg-Cu alloy by underwater friction stir welding. Mater Des 102:91–99. https://doi.org/10.1016/j.matdes.2016.04.036

  32. 32.

    Heirani F, Abbasi A, Ardestani M (2017) Effects of processing parameters on microstructure and mechanical behaviors of underwater friction stir welding of Al5083 alloy. J Manuf Process 25:77–84. https://doi.org/10.1016/j.jmapro.2016.11.002

  33. 33.

    Chen H, Zhao Y, Wang Q, Yan K (2014) Microstructure and mechanical properties of spray formed 7055 aluminum alloy by underwater friction stir welding. Mater Des 56:725–730. https://doi.org/10.1016/j.matdes.2013.11.071

  34. 34.

    Zhang H, Liu H (2013) Mathematical model and optimization for underwater friction stir welding of a heat-treatable aluminum alloy. Mater Des 45:206–211. https://doi.org/10.1016/j.matdes.2012.09.022

  35. 35.

    Zhang HJ, Liu HJ, Yu L (2011) Microstructure and mechanical properties as a function of rotation speed in underwater friction stir welded aluminum alloy joints. Mater Des 32(8-9):4402–4407. https://doi.org/10.1016/j.matdes.2011.03.073

  36. 36.

    Liu HJ, Zhang HJ, Yu L (2011) Effect of welding speed on microstructures and mechanical properties of underwater friction stir welded 2219 aluminum alloy. Mater Des 32(3):1548–1553. https://doi.org/10.1016/j.matdes.2010.09.032

  37. 37.

    Zhao Y, Lu Z, Yan K, Huang L (2015) Microstructural characterizations and mechanical properties in underwater friction stir welding of aluminum and magnesium dissimilar alloys. Mater Des 65:675–681. https://doi.org/10.1016/j.matdes.2014.09.046

  38. 38.

    Ramachandran KK, Murugan N, Shashi Kumar S (2015) Study on dissimilar butt joining of aluminum alloy, AA5052 and high strength low alloy steel through a modified FSW process. Mater Sci Forum 830:278–281. https://doi.org/10.4028/www.scientific.net/MSF.830-831.278

  39. 39.

    Sree Sabari S, Malarvizhi S, Balasubramanian V (2016) Characteristics of FSW and UWFSW joints of AA2519-T87 aluminium alloy: effect of tool rotation speed. J Manuf Process 22:278–289. https://doi.org/10.1016/j.jmapro.2016.03.014

  40. 40.

    Zhao Y, Jiang S, Yang S, Lu Z, Yan K (2016) Influence of cooling conditions on joint properties and microstructures of aluminum and magnesium dissimilar alloys by friction stir welding. Int J Adv Manuf Technol 83(1-4):673–679. https://doi.org/10.1007/s00170-015-7624-y

  41. 41.

    Wang BB, Chen FF, Liu F, Wang WG, Xue P, Ma ZY (2017) Enhanced Mechanical Properties of Friction Stir Welded 5083Al-H19 Joints with Additional Water Cooling. Journal of Materials Science & Technology 33:1009-1014. https://doi.org/10.1016/j.jmst.2017.01.016

  42. 42.

    Sree Sabari S, Malarvizhi S, Balasubramanian V (2016) Influences of tool traverse speed on tensile properties of air cooled and water cooled friction stir welded AA2519-T87 aluminium alloy joints. J Mater Process Technol 237:286–300. https://doi.org/10.1016/j.jmatprotec.2016.06.015

  43. 43.

    Zhang H-j, Liu H-j, Yu L (2013) Thermal modeling of underwater friction stir welding of high strength aluminum alloy. Trans Nonferrous Metals Soc China 23(4):1114–1122. https://doi.org/10.1016/S1003-6326(13)62573-X

  44. 44.

    Zhang J, Shen Y, Yao X, Xu H, Li B (2014) Investigation on dissimilar underwater friction stir lap welding of 6061-T6 aluminum alloy to pure copper. Mater Des 64:74–80. https://doi.org/10.1016/j.matdes.2014.07.036

  45. 45.

    Mofid MA, Abdollah-zadeh A, Malek Ghaini F (2012) The effect of water cooling during dissimilar friction stir welding of Al alloy to Mg alloy. Mater Des 36:161–167. https://doi.org/10.1016/j.matdes.2011.11.004

  46. 46.

    Hui-jie L, Hui-jie Z, Huang Y-x, Lei YU (2010) Mechanical properties of underwater friction stir welded 2219 aluminum alloy. Trans Nonferrous Metals Soc China 20:1387–1391. https://doi.org/10.1016/S1003-6326(09)60309-5

  47. 47.

    Rai R, De A, Bhadeshia GKDH, Debroy T (2011) Review: friction stir welding tools. Sci Technol Weld Join 16(4):325–342. https://doi.org/10.1179/1362171811Y.0000000023

  48. 48.

    Zhang YN, Cao X, Larose S, Wanjara P (2012) Review of tools for friction stir welding and processing. Canadian Metallurgical Quarterly 51(3):250-261. https://doi.org/10.1179/1879139512Y.0000000015

  49. 49.

    Shanavas S, Edwin Raja Dhas J (2017) Parametric optimization of friction stir welding parameters of marine grade aluminium alloy using response surface methodology. Transactions of Nonferrous Metals of China 27:2334-2344. https://doi.org/10.1016/S1003-6326(17)60259-0

  50. 50.

    ASTM E8/E8M-09 (2010) Standard test methods for tension testing of metallic materials, ASTM International

Download references

Acknowledgements

The authors are grateful to the Department of Mechanical Engineering, Coimbatore Institute of Technology, India, for extending the facilities to carry out the investigations.

Author information

Correspondence to J. Edwin Raja Dhas.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shanavas, S., Edwin Raja Dhas, J. & Murugan, N. Weldability of marine grade AA 5052 aluminum alloy by underwater friction stir welding. Int J Adv Manuf Technol 95, 4535–4546 (2018) doi:10.1007/s00170-017-1492-6

Download citation

Keywords

  • Aluminum alloy
  • Underwater friction stir welding
  • Tensile strength
  • Hardness
  • Fractography