3D-finite element simulation and image processing based prediction of width and height of single-layer deposition by micro-plasma-transferred arc process

  • Sagar H. Nikam
  • Neelesh Kumar JainEmail author


This paper reports on prediction of width and height of single-layer deposition by micro-plasma-transferred arc (μ-PTA) deposition process. It involved (i) 3D finite element simulation (3D-FES) of the melt pool using specific power of the micro-plasma, travel rate of worktable, deposition material feed rate, and temperature-dependent properties of the substrate material; (ii) calculation of its dimensions using image processing technique; and (iii) prediction of deposition width and height. The proposed approach was validated by comparing the predicted values with the corresponding experimental values for single-layer deposition of AISI P20 tool steel using different combinations of the μ-PTA deposition process parameters. Values of average errors as 6.11 and 7.15% for width and height of the single-layer deposition validates the simulation-predicted results. Study of influence of μ-PTA process parameters on deposition geometry revealed that micro-plasma power and travel rate of worktable significantly affect the width and height of the deposition layer. The proposed approach will be of great help in selecting the optimum values of deposition process parameters for any combination of substrate and deposition material thus improving accuracy and productivity of the additive layer manufactured parts.


Layered manufacturing Metallic deposition Micro-plasma Finite element simulation Image processing P20 tool steel 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vilar R (1999) Laser cladding. J Laser Appl 11(2):64–79. CrossRefGoogle Scholar
  2. 2.
    Baufeld B, Brandl E, Van Der Biest O (2011) Wire based additive layer manufacturing: comparison of microstructure and mechanical properties of Ti-6Al-4V components fabricated by laser-beam deposition and shaped metal deposition. J Mater Process Tech 211(6):1146–1158. CrossRefGoogle Scholar
  3. 3.
    Liu W, DuPont JN (2003) Fabrication of functionally graded TiC/Ti composites by laser engineered net shaping. Scr Mater 48(9):1337–1342. CrossRefGoogle Scholar
  4. 4.
    Ahsan MN, Paul CP, Kukreja LM, Pinkerton AJ (2011) Porous structures fabrication by continuous and pulsed laser metal deposition for biomedical applications: modeling and experimental investigation. J Mater Process Tech 211(4):602–609. CrossRefGoogle Scholar
  5. 5.
    Jhavar S, Jain NK, Paul CP (2014) Development of micro-plasma transferred arc (μ-PTA) wire deposition process for additive layer manufacturing applications. J Mater Process Tech 214(5):1102–1110. CrossRefGoogle Scholar
  6. 6.
    Gharbi M, Peyre P, Gorny C, Carin M, Morville S, Le Masson P, Carron D, Fabbro R (2013) Influence of various process conditions on surface finishes induced by the direct metal deposition laser technique on a Ti-6Al-4V alloy. J Mater Process Tech 213(5):791–800. CrossRefGoogle Scholar
  7. 7.
    Zhao H, Zhang G, Yin Z, Wu L (2012) Three-dimensional finite element analysis of thermal stress in single-pass multi-layer weld-based rapid prototyping. J Mater Process Tech 212(1):276–285. CrossRefGoogle Scholar
  8. 8.
    Peyre P, Aubry P, Fabbro R, Neveu R, Longuet A (2008) Analytical and numerical modeling of the direct metal deposition laser process. J Phys D Appl Phys 41(2):1–10. CrossRefGoogle Scholar
  9. 9.
    Vasquez F, Ramos-Grez JA, Walczak M (2012) Multiphysics simulation of laser-material interaction during laser powder deposition. Int J Adv Manuf Tech 59(9-12):1037–1045. CrossRefGoogle Scholar
  10. 10.
    Toyserkani E, Khajepour A, Corbin S (2003) Three-dimensional finite element modeling of laser cladding by powder injection: effects of powder feed rate and travel speed on the process. J Laser Appl 15(3):153–160. CrossRefGoogle Scholar
  11. 11.
    Lalas C, Tsirbas K, Salonitis K, Chryssolouris G (2007) An analytical model of the laser clad geometry. Int J Adv Manuf Tech 32(1-2):34–41. CrossRefGoogle Scholar
  12. 12.
    Zhao H, Zhang G, Yin Z, Wu L (2011) A 3D dynamic analysis of thermal behavior during single-pass multi-layer weld-based rapid prototyping. J Mater Process Tech 211(3):488–495. CrossRefGoogle Scholar
  13. 13.
    Gan Z, Ng HW, Devasenapathi A (2004) Deposition-induced residual stresses in plasma-sprayed coatings. Surf Coat Tech 187(2-3):307–319. CrossRefGoogle Scholar
  14. 14.
    Abid M, Siddique M (2005) Numerical simulation to study the effect of tack welds and root gap on welding deformations and residual stresses of a pipe-flange joint. Int J Press Vessel Pip 82(11):860–871. CrossRefGoogle Scholar
  15. 15.
    Goyal VK, Ghosh PK, Saini JS (2009) Analytical studies on thermal behavior and geometry of weld pool in pulsed current gas metal arc welding. J Mater Process Tech 209(3):1318–1336. CrossRefGoogle Scholar
  16. 16.
    Traidia A, Roger F (2011) Numerical and experimental study of arc and weld pool behavior for pulsed current GTA welding. Int J Heat Mass Transf 54(9-10):2163–2179. CrossRefzbMATHGoogle Scholar
  17. 17.
    Wu CS, Wang L, Ren WJ, Zhang XY (2014) Plasma arc welding: process, sensing, control and modeling. J Manuf Process 16(1):74–85. CrossRefGoogle Scholar
  18. 18.
    Lee D (1983) A finite element modeling of the low pressure plasma deposition process-I temperature analysis. Int J Mech Sci 25(8):543–551. CrossRefGoogle Scholar
  19. 19.
    Nikam SH, Jain NK, Jhavar S (2016) Thermal modeling of geometry of single-track deposition in micro-plasma transferred arc deposition process. J Mater Process Tech 230:121–130. CrossRefGoogle Scholar
  20. 20.
    ANSYS13.0, 2010© ANSYS, Inc. Canonsburg, Pennsylvania (USA)Google Scholar
  21. 21.
    Nikam SH, Jain NK (2017) Three-dimensional thermal analysis of multi-layer metallic deposition by micro-plasma transferred arc process using finite element simulation. J Mater Process Tech 249:264–273. CrossRefGoogle Scholar
  22. 22.
    Amorim FL (2007) The behavior of graphite and copper electrodes on the finish die-sinking electrical discharge machining (EDM) of AISI P20 tool steel. J Braz Soc Mech Sci Eng XXIX 29(4):366–371. CrossRefGoogle Scholar
  23. 23.
    Alimardani M, Toyserkani E, Huissoon JP (2007) Three-dimensional numerical approach for geometrical prediction of multilayer laser solid freeform fabrication process. J Laser Appl 19(1):14–25. CrossRefGoogle Scholar
  24. 24.
    Lampa C, Kaplan AFH, Powell J, Magnusson C (1997) An analytical thermodynamic model of laser welding. J Phys D Appl Phys 30(9):1293–1299. CrossRefGoogle Scholar
  25. 25.
    Huiping L, Guoqun Z, Shanting N, Chuanzhen H (2007) FEM simulation of quenching process and experimental verification of simulation results. Mater Sci Eng A 452–453:705–714. CrossRefGoogle Scholar
  26. 26.
    MATLAB (version R2010A), 2015© MathWork Inc. Natick, Massachusetts (USA)Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Discipline of Mechanical EngineeringIndian Institute of Technology IndoreSimrolIndia

Personalised recommendations