Advertisement

A study on the micromachining of molybdenum using nanosecond and femtosecond lasers

  • Mobin M. Mathew
  • Ravi N. Bathe
  • G. Padmanabham
  • R. PadmanabanEmail author
  • S. Thirumalini
ORIGINAL ARTICLE

Abstract

Laser micromachining is an advanced machining process in which machining is achieved by focusing a laser beam to melt and vaporize the material. The primary aim of this work is to fabricate a control grid for an electron gun using laser micromachining. Initially, line scribing and 2D profiling experiments are performed on a 130-μm molybdenum plate to compare the surface quality and material removal rate of nanosecond and femtosecond lasers. The effects of laser processing parameters such as average power, repetition rate, and the feed rate on the width, depth, material removal rate, and cut quality of both the nanosecond and femtosecond lasers are studied. During micromachining using the nanosecond laser, melting and recasting of the metal around the machined sites are observed, resulting in the formation of heat-affected zone. During machining using the femtosecond laser, ultrafast laser pulses are used, which result in the absence of heat-affected zone. The surface roughness obtained using the femtosecond laser for creating a 2D profile is 0.187 μm, while using the nanosecond laser, the roughness value obtained is 1.89 μm. The femtosecond laser is used to successfully machine the 3D profile of the control grid, adopting the optimized parameters obtained from the line scribing and 2D profiling experiments. The average width of the grid line was measured as 149.89 μm which is very close to the required dimension of 150 μm.

Keywords

Laser micromachining Line scribing 2D profiling Heat-affected zone Surface roughness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lee S, Yang D, Nikumb S (2008) Femtosecond laser micromilling of Si wafers. Appl Surf Sci 254(10):2996–3005.  https://doi.org/10.1016/j.apsusc.2007.10.063 CrossRefGoogle Scholar
  2. 2.
    Stavropoulos P, Efthymiou K, Chryssolouris G (2012) Investigation of the material removal efficiency during femtosecond laser machining. Procedia CIRP 3:471–476.  https://doi.org/10.1016/j.procir.2012.07.081 CrossRefGoogle Scholar
  3. 3.
    Hung C-H, Chang FY, Chang TL, Chang YT, Huang KW, Liang PC (2015) Micromachining NiTi tubes for use in medical devices by using a femtosecond laser. Opt Lasers Eng 66:34–40.  https://doi.org/10.1016/j.optlaseng.2014.08.001 CrossRefGoogle Scholar
  4. 4.
    Yu X, Ma J, Lei S (2015) Femtosecond laser scribing of Mo thin film on flexible substrate using axicon focused beam. J Manuf Process 20:349–355.  https://doi.org/10.1016/j.jmapro.2015.05.004 CrossRefGoogle Scholar
  5. 5.
    Darvishi S, Cubaud T, Longtin JP (2012) Ultrafast laser machining of tapered microchannels in glass and PDMS. Opt Lasers Eng 50(2):210–214.  https://doi.org/10.1016/j.optlaseng.2011.09.003 CrossRefGoogle Scholar
  6. 6.
    Cheng J, Perrie W, Edwardson SP, Fearon E, Dearden G, Watkins KG (2009) Effects of laser operating parameters on metals micromachining with ultrafast lasers. Appl Surf Sci 256(5):1514–1520.  https://doi.org/10.1016/j.apsusc.2009.09.013 CrossRefGoogle Scholar
  7. 7.
    Amer M et al (2005) Femtosecond versus nanosecond laser machining: comparison of induced stresses and structural changes in silicon wafers. Appl Surf Sci 242(1):162–167.  https://doi.org/10.1016/j.apsusc.2004.08.029 CrossRefGoogle Scholar
  8. 8.
    Uppal N, Shiakolas PS, Priya S (2005) Micromachining of PZT using ultrafast femtosecond laser. Ferroelectric Letters 32(3–4):67–77.  https://doi.org/10.1080/07315170500311465 CrossRefGoogle Scholar
  9. 9.
    Park J-K, Yoon J-W, Cho S-H (2012) Vibration assisted femtosecond laser machining on metal. Opt Lasers Eng 50(6):833–837.  https://doi.org/10.1016/j.optlaseng.2012.01.017 CrossRefGoogle Scholar
  10. 10.
    Malshe A, Deshpande D, Stach E, Rajurkar K, Alexander D (2004) Investigation of femtosecond laser-assisted micromachining of lithium niobate. CIRP Annals-Manufacturing Technology 53(1):187–190.  https://doi.org/10.1016/S0007-8506(07)60675-1 CrossRefGoogle Scholar
  11. 11.
    Watanabe W, Li Y, Itoh K (2016) Ultrafast laser micro-processing of transparent material. Opt Laser Technol 78:52–61.  https://doi.org/10.1016/j.optlastec.2015.09.023 CrossRefGoogle Scholar
  12. 12.
    Huang H, Zheng H, Lim G (2004) Femtosecond laser machining characteristics of Nitinol. Appl Surf Sci 228(1):201–206.  https://doi.org/10.1016/j.apsusc.2004.01.018 CrossRefGoogle Scholar
  13. 13.
    Wu Y, Vorobyev AY, Clark RL, Guo C (2011) Femtosecond laser machining of electrospun membranes. Appl Surf Sci 257(7):2432–2435.  https://doi.org/10.1016/j.apsusc.2010.09.111 CrossRefGoogle Scholar
  14. 14.
    Zhu X, Villeneuve DM, Naumov AY, Nikumb S, Corkum PB (1999) Experimental study of drilling sub-10 μm holes in thin metal foils with femtosecond laser pulses. Appl Surf Sci 152(3):138–148.  https://doi.org/10.1016/S0169-4332(99)00331-1 CrossRefGoogle Scholar
  15. 15.
    Wei J, Ye Y, Sun Z, Liu L, Zou G (2015) Control of the kerf size and microstructure in Inconel 738 superalloy by femtosecond laser beam cutting. Appl Surf Sci 370:364–372CrossRefGoogle Scholar
  16. 16.
    Richards S, Baker MA, Wilson MD, Lohstroh A, Seller P (2016) Femtosecond laser ablation of cadmium tungstate for scintillator arrays. Opt Lasers Eng 83:116–125.  https://doi.org/10.1016/j.optlaseng.2016.03.004 CrossRefGoogle Scholar
  17. 17.
    Tan B, Dalili A, Venkatakrishnan K (2009) High repetition rate femtosecond laser nano-machining of thin films. Applied Physics A 95(2):537–545.  https://doi.org/10.1007/s00339-008-4938-8 CrossRefGoogle Scholar
  18. 18.
    Yang C, Tian Y, Cui L, Zhang D (2015) Laser-induced changes in titanium by femtosecond, picosecond and millisecond laser ablation. Radiation Effects and Defects in Solids 170(6):528–540.  https://doi.org/10.1080/10420150.2015.1052436 CrossRefGoogle Scholar
  19. 19.
    Zhang Y, Lowe RM, Harvey E, Hannaford P, Endo A (2002) High aspect-ratio micromachining of polymers with an ultrafast laser. Appl Surf Sci 186(1):345–351.  https://doi.org/10.1016/S0169-4332(01)00673-0 CrossRefGoogle Scholar
  20. 20.
    Wang Q, Luo S, Chen Z, Qi H, Deng J, Hu Z (2016) Drilling of aluminum and copper films with femtosecond double-pulse laser. Opt Laser Technol 80:116–124.  https://doi.org/10.1016/j.optlastec.2016.01.001 CrossRefGoogle Scholar
  21. 21.
    Abilash M, Senthil kumar D, Padmanabham G, Paniprabhakar, Padmanaban R, Thirumalini S (2016) The effect of welding direction in CO2 LASER - MIG hybrid welding of mild steel plates. IOP Conference Series: Materials Science and Engineering 149(1):012031.  https://doi.org/10.1088/1757-899X/149/1/012031 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2017

Authors and Affiliations

  • Mobin M. Mathew
    • 1
  • Ravi N. Bathe
    • 2
  • G. Padmanabham
    • 2
  • R. Padmanaban
    • 1
    Email author
  • S. Thirumalini
    • 1
  1. 1.Department of Mechanical EngineeringAmrita School of Engineering, CoimbatoreAmrita Vishwa VidyapeethamIndia
  2. 2.Center for Laser Processing of MaterialsARCIHyderabadIndia

Personalised recommendations