Effect of SiC and TiC nanoparticle reinforcement on the microstructure, microhardness, and tensile performance of AA6082-T6 friction stir welds

  • P. N. Karakizis
  • D. I. Pantelis
  • G. Fourlaris
  • P. Tsakiridis
ORIGINAL ARTICLE
  • 97 Downloads

Abstract

During the last decade, friction stir welding has various applications in the automotive, shipbuilding, and aerospace industry due to its versatility. More recently, there have been trials to combine FSW with ceramic nanoparticle reinforcement in order to form MMCs locally on the weld line. This combination could result to potential applications on the above industries. In the present study, optical and electron microscopy, as well as microhardness and tensile testing, were used in order to determine the effect that SiC and TiC nanopowders have on the weld nugget of AA6082-T6 butt welds. It is the first time that such a thorough study via TEM in combination with EDS was conducted for this alloy. Emphasis was given on the distribution of dislocations and on the presence of the intermetallic and reinforcing particles in the weld. It was found that the grain size of all the specimens was dramatically decreased due to the dynamic recrystallization phenomenon. This also provoked the dilution of a lot of the intermetallic particles of the base metal and the multiplication of the dislocations. Between the two reinforced specimens, the SiC presented higher elongation while the TiC presented higher microhardness.

Keywords

Friction stir welding Dissimilar Reinforcing particle Microstructure Mechanical behavior Transmission electron microscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors would like to thank the R-Nano Laboratory of the School of Chemical Engineering of the National Technical University of Athens for providing the SiC and TiC nanopowders.

References

  1. 1.
    Dawes CJ, Thomas WM (1996) Friction stir process welds aluminum alloys. Weld J 75(3):41–45Google Scholar
  2. 2.
    Fuller CB, Mahoney MW (2006) The effect of friction stir processing on 5083-H321/5356 al arc welds: microstructural and mechanical analysis. Metallur Mater Trans A 37(12):3605–3615.  https://doi.org/10.1007/s11661-006-1055-1 CrossRefGoogle Scholar
  3. 3.
    Mishra RS, Mahoney MW (2001) Friction stir processing: a new grain refinement technique to achieve high strain rate Superplasticity in commercial alloys. Mater Sci Forum 357–359:507–514CrossRefGoogle Scholar
  4. 4.
    Orozco-Caballero A, Álvarez-Leal M, Hidalgo-Manrique P, Cepeda-Jiménez CM, Ruano OA, Carreño F (2017) Grain size versus microstructural stability in the high strain rate superplastic response of a severely friction stir processed al-Zn-mg-cu alloy. Mater Sci Eng A 680:329–337.  https://doi.org/10.1016/j.msea.2016.10.113 CrossRefGoogle Scholar
  5. 5.
    García-Bernal MA, Mishra RS, Verma R, Hernández-Silva D (2016) Influence of friction stir processing tool design on microstructure and superplastic behavior of al-mg alloys. Mater Sci Eng A 670:9–16.  https://doi.org/10.1016/j.msea.2016.05.115 CrossRefGoogle Scholar
  6. 6.
    Lynch SP, Edwards D, Majumdar A, Moutsos S, Mahoney M (2003) Friction stir processing of a high-damping Mn-cu alloy used for marine propellers. Mater Sci Forum 426–432(4):2903–2908.  https://doi.org/10.4028/www.scientific.net/MSF.426-432.2903
  7. 7.
    Selvam K, Ayyagari A, Grewal HS, Mukherjee S, Arora HS (2017) Enhancing the erosion-corrosion resistance of steel through friction stir processing. Wear 386–387:129–138CrossRefGoogle Scholar
  8. 8.
    Navazani M, Dehghani K (2016) Fabrication of mg-ZrO2 surface layer composites by friction stir processing. J Mater Process Technol 229:439–449.  https://doi.org/10.1016/j.jmatprotec.2015.09.047 CrossRefGoogle Scholar
  9. 9.
    Yadav V, Kumar V, Tiwari V (2014) Effect of tool pin profile on mechanical properties of Al6082 and Al6082-cu composite by friction stir processing. IOSR J Mech Civil Eng 11(3):7–11.  https://doi.org/10.9790/1684-11340711 CrossRefGoogle Scholar
  10. 10.
    Palanivel R, Dinaharan I, Laubscher RF, Paulo Davim J (2016) Influence of boron nitride nanoparticles on microstructure and wear behavior of AA6082/TiB2 hybrid aluminum composites synthesized by friction stir processing. Mater Des 106:195–204.  https://doi.org/10.1016/j.matdes.2016.05.127 CrossRefGoogle Scholar
  11. 11.
    Zhenglin D, Ming Jen T, Jun Feng G, Guijun B, Jun W (2016) Fabrication of a new al-Al2O3-CNTs composite using friction stir processing (FSP). Mater Sci Eng A 667:125–131CrossRefGoogle Scholar
  12. 12.
    Ahn BW, Choi DH, Kim YH, Jung SB (2012) Fabrication of SiCp/AA5083 composite via friction stir welding. Trans Nonferr Metall Soc Cnina 22(3):634–638CrossRefGoogle Scholar
  13. 13.
    Bahrami M, Kazem Besharati Givi M, Dehghani K, Parvin N (2014) On the role of pin geometry in microstructure and mechanical properties of AA7075/SiC nano-composite fabricated by friction stir welding technique. Mater Des 53:519–527.  https://doi.org/10.1016/j.matdes.2013.07.049 CrossRefGoogle Scholar
  14. 14.
    Dragatogiannis DA, Koumoulos EP, Kartsonakis I, Pantelis DI, Karakizis PN, Charitidis CA (2016) Dissimilar friction stir welding between 5083 and 6082 al alloys reinforced with TiC nanoparticles. Mater Manuf Process 31(16):2101–2114.  https://doi.org/10.1080/10426914.2015.1103856 CrossRefGoogle Scholar
  15. 15.
    Pantelis DI, Karakizis PN, Daniolos NM, Charitidis CA, Koumoulos EP, Dragatogiannis DA (2016) Microstructural study and mechanical properties of dissimilar friction stir welded AA5083-H111 and AA6082-T6 reinforced with SiC nanoparticles. Mater Manuf Process 31(3):264–274.  https://doi.org/10.1080/10426914.2015.1019095 CrossRefGoogle Scholar
  16. 16.
    Pantelis DI, Karakizis PN, Dragatogiannis DA, Charitidis CA (2015) Dissimilar friction stir welding of aluminum alloys reinforced with carbon nanotubes. In: Charitidis CA (ed) Nanomaterials in joining, 1st edn. de Gruyter, Berlin, pp 23–52.  https://doi.org/10.1515/9783110339727-004 Google Scholar
  17. 17.
    Verma S, Meenu, Mishra JP (2017) Study on temperature distribution during Friction Stir Welding of 6082 aluminum alloy. Mater Today Proc Part A 4(2):1350–1356CrossRefGoogle Scholar
  18. 18.
    Chen SJ, Lu AL, Yang DL, Lu S, Dong JH, Dong CL (2013) Analysis on flow pattern of bobbin tool friction stir welding for 6082 aluminum. Proceedings of the 1st International Joint Symposium on Joining and Welding, Osaka, 6–8 November 2013, pp 353–358Google Scholar
  19. 19.
    El-Rayes M, El-Danaf E (2012) The influence of multi-pass friction stir processing on the microstructural and mechanical properties of Aluminum Alloy 6082. J Mater Process Technol 212(5):1157–1168CrossRefGoogle Scholar
  20. 20.
    Scialpi A, De Filippis LAC, Cavaliere P (2007) Influence of shoulder geometry on microstructure and mechanical properties of friction stir welded 6082 aluminium alloy. Mater Des 28(4):1124–1129.  https://doi.org/10.1016/j.matdes.2006.01.031 CrossRefGoogle Scholar
  21. 21.
    Selvakumar S, Dinaharan I, Palanivel R, Ganesh Babu B (2017) Development of stainless steel particulate reinforced AA6082 aluminum matrix composites with enhanced ductility using friction stir processing. Mater Sci Eng A 685:317–326.  https://doi.org/10.1016/j.msea.2017.01.022 CrossRefGoogle Scholar
  22. 22.
    Selvakumar S, Dinaharan I, Palanivel R, Ganesh Babu B (2017) Characterization of molybdenum particles reinforced Al6082 aluminum matrix composites with improved ductility produced using friction stir processing. Mater Charact 125:13–22.  https://doi.org/10.1016/j.matchar.2017.01.016 CrossRefGoogle Scholar
  23. 23.
    Koumoulos EP, Charitidis CA, Daniolos NM, Pantelis DI (2011) Nanomechanical properties of friction stir welded AA6082-T6 aluminum alloy. Mater Sci Eng B 176(19):1585–1589.  https://doi.org/10.1016/j.mseb.2011.01.015 CrossRefGoogle Scholar
  24. 24.
    Avettand-Fènoël MN, Simar A, Shabadi R, Taillard R, de Meester B (2014) Characterization of Oxide Dispersion Strengthened Copper Based Materials Developed by Friction Stir Processing. Mater Des 60:343–357.  https://doi.org/10.1016/j.matdes.2014.04.012 CrossRefGoogle Scholar
  25. 25.
    Sutton MA, Yang B, Reynolds AP, Taylor R (2002) Microstructural studies of friction stir welds in 2024-T3 aluminum. Mater Sci Eng A 323(1):160–166.  https://doi.org/10.1016/S0921-5093(01)01358-2 CrossRefGoogle Scholar
  26. 26.
    McNelley TR, Swaminathan S, JQ S (2008) Recrystallization mechanisms during friction stir welding/processing of aluminum alloys. Scr Mater 58(5):349–354.  https://doi.org/10.1016/j.scriptamat.2007.09.064 CrossRefGoogle Scholar
  27. 27.
    Humphreys FJ, Hatherly M (2004) Recrystallization and related annealing phenomena, 2nd edn. Elsevier, OxfordGoogle Scholar
  28. 28.
    Mrówka-Nowotnik G, Sieniawski J, Wierzbiñska M (2007) Intermetallic phase particles in 6082 aluminium alloy. Arch Mater Sci Eng 28(2):69–76Google Scholar
  29. 29.
    Mrówka-Nowotnik G (2007) Intermetallic phase identification on the cast and heat treated 6082 aluminium alloy. Microscopy - advanced tools for tomorrow's materials, BerlinGoogle Scholar
  30. 30.
    Angella G, Bassani P, Tuissi A, Vedani M (2004) Intermetallic particle evolution during ECAP processing of a 6082 alloy. Mater Trans 45(7):2182–2186.  https://doi.org/10.2320/matertrans.45.2182 CrossRefGoogle Scholar
  31. 31.
    Vestfjell Jakobsen J (2016) Microstructure and mechanical properties of welded AA6082 Aluminium alloys. Norwegian University of Science and Technology Department of Materials Science and Engineering, TrondheimGoogle Scholar
  32. 32.
    Jamshidi Aval H (2015) Microstructure and residual stress distributions in friction stir welding of dissimilar aluminium alloys. Mater Des 87:405–413CrossRefGoogle Scholar
  33. 33.
    Jandaghi MR, Pouraliakbar H, Khalaj G, Khalaj M-J, Heidarzadeh A (2016) Study on the post-rolling direction of severely plastic deformed aluminum-manganese-silicon alloy. Arch Civil Mech Eng 16(4):876–887.  https://doi.org/10.1016/j.acme.2016.06.005 CrossRefGoogle Scholar
  34. 34.
    Jandaghi MR, Pouraliakbar H (2017) Study on the effect of post-annealing on the microstructural evolutions and mechanical properties of rolled CGPed aluminum-manganese-silicon alloy. Mater Sci Eng A 679:493–503.  https://doi.org/10.1016/j.msea.2016.10.054 CrossRefGoogle Scholar
  35. 35.
    Pouraliakbar H, Jandaghi MR, Khalaj G (2017) Constrained groove pressing and subsequent annealing of al-Mn-Si alloy: microstructure evolutions, crystallographic transformations, mechanical properties, electrical conductivity and corrosion resistance. Mater Des 124:34–46.  https://doi.org/10.1016/j.matdes.2017.03.053 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2017

Authors and Affiliations

  • P. N. Karakizis
    • 1
  • D. I. Pantelis
    • 1
  • G. Fourlaris
    • 2
  • P. Tsakiridis
    • 2
  1. 1.Shipbuilding Technology Laboratory, School of Naval Architecture and Marine EngineeringNational Technical University of AthensAthensGreece
  2. 2.Laboratory of Physical Metallurgy, School of Mining and Metallurgical EngineeringNational Technical University of AthensAthensGreece

Personalised recommendations