An interactive method for predicting industrial equipment defects

  • A. Slimane
  • S. Kebdani
  • B. Bouchouicha
  • M. Benguediab
  • S. Slimane
  • K. Bahram
  • M. Chaib
  • N. Sardi
ORIGINAL ARTICLE
  • 41 Downloads

Abstract

As a major aspect of vibratory verification and the recognition of imperfections and defects in rotating machines, gears have been the subject of much research. These elements are very requested and likely to present defects which evolve rapidly to the rupture. An approach is provided for fault identification on the premise of time-frequency signal analysis techniques. It is shown that the new technique is significant of the energy concentration on the instantaneous frequency of the individual components in the vibration signal, which allows monitoring of the signal amplitude and frequency modulation with a high degree of accuracy and in a small range of frequencies. The analysis of gear defects made on the measured signals can link the observed effects of vibration to material causes that generate them and provided a very powerful tool for maintenance purposes, especially in industry where competition is expressed by the quality and the costs. The main objective of this work is to improve the gear safety, the identification, and the development of vibration analysis techniques for the detection and diagnosis of defects in critical security on the systems gear transmission. To confirm the theoretical results, we have taken an example of furnace gear reducer.

Keywords

Vibratory analysis Diagnosis Defect detection Transmission by gears 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank all the members who contributed to this work, without forgetting all the people who helped us to pass this study.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Drouiche K, Sidahmed M, Grenier Y (1991) Fault detection in gears using advanced signal processing techniques, Proceedings of the 3rd International Machinery Monitoring and Diagnosis, pp. 65–71Google Scholar
  2. 2.
    Djaidir B, Hafaifa A, Abdallaha K, Modélisation et Simulation des vibrations du rotor BP d’une turbine a gaz MS 5002b, et l’effet de répartition de masse sur le roulement à (bille), in The 1st International Conference on Applied Automation and Industrial Diagnostics (ICAAID 2015), Djelfa on, 2015, pp. 29–30Google Scholar
  3. 3.
    Huo Z, Zhang Y, Francq P, Shu L, Huang J (2017) Incipient fault diagnosis of roller bearing using optimized wavelet transform based multi-speed vibration signatures, IEEE AccessGoogle Scholar
  4. 4.
    Antoni J, Griffaton J, André H, Avendaño-Valencia LD, Bonnardot F, Cardona-Morales O, Castellanos-Dominguez G, Daga AP, Leclère Q, Vicuña CM, Acuña DQ, Ompusunggu AP, Sierra-Alonso EF (2017) Feedback on the surveillance 8 challenge: vibration-based diagnosis of a Safran aircraft engine. Mech Syst Signal Process 97:112–144.  https://doi.org/10.1016/j.ymssp.2017.01.037 CrossRefGoogle Scholar
  5. 5.
    Diana G (2014) Diagnostics of rotating machines in power plants: proceedings of the CISM/IFToMM Symposium, October 27–29, 1993, Udine, Italy vol. 352: SpringerGoogle Scholar
  6. 6.
    Singh A, Parey A (2017) Gearbox fault diagnosis under non-stationary conditions with independent angular re-sampling technique applied to vibration and sound emission signals. Appl Acoust.  https://doi.org/10.1016/j.apacoust.2017.04.015
  7. 7.
    Girondin V, Morel H, Cassar J-P, Pekpe KM (2015) Vibration-based fault detection of meshing shafts. IFAC-PapersOnLine 48(21):560–565.  https://doi.org/10.1016/j.ifacol.2015.09.585 CrossRefGoogle Scholar
  8. 8.
    Guan Z, Chen P, Zhang X, Zhou X, Li K (2017) July 2017-P1-vibration analysis of shaft misalignment and diagnosis method of structure faults for rotating machinery. Int J Performability Eng 13:337Google Scholar
  9. 9.
    ZHAO, Ming et JIA, Xiaodong (2017) A novel strategy for signal denoising using reweighted SVD and its applications to weak fault feature enhancement of rotating machinery. Mech Syst Signal Process 94:29–147. doi:  https://doi.org/10.1016/j.ymssp.2017.02.036
  10. 10.
    Dumas J, Bennevault B (2001) Analyse du signal (FFT et filtrage numérique) and analyse des systèmes MVI technologies GroupGoogle Scholar
  11. 11.
    El Badaoui M (1999) Contribution au diagnostic vibratoire des reducteurs complexes a engrenages par l’analyse cepstrale, Université Jean Monnet-Saint-EtienneGoogle Scholar
  12. 12.
    Eftekharnejad B, Mba D (2009) Seeded fault detection on helical gears with acoustic emission. Appl Acoust 70(4):547–555.  https://doi.org/10.1016/j.apacoust.2008.07.006 CrossRefGoogle Scholar
  13. 13.
    De Moura E, Vieira A, Irmao M, Silva A (2009) Applications of detrended-fluctuation analysis to gearbox fault diagnosis. Mech Syst Signal Process 23(3):682–689.  https://doi.org/10.1016/j.ymssp.2008.06.001 CrossRefGoogle Scholar
  14. 14.
    Elforjani M, Mba D, Muhammad A, Sire A (2012) Condition monitoring of worm gears. Appl Acoust 73(8):859–863.  https://doi.org/10.1016/j.apacoust.2012.03.008 CrossRefGoogle Scholar
  15. 15.
    De Almeida, Fabrício Cesar Lobato, Gonçalves, Aparecido Carlos, Brennan, Michael John et al (2017) An illustration of some methods to detect faults in geared systems using a simple model of two meshed gears. In : Probabilistic Prognostics and Health Management of Energy Systems. Springer International Publishing, p. 221–239Google Scholar
  16. 16.
    Bajric R, Sprecic D, Zuber N (2011) Review of vibration signal processing techniques towards gear pairs damage identification. Int J Eng Technol 11:124–128Google Scholar
  17. 17.
    Chunguang H, Yulong L, Yundong C, Jing L, Yuchen C (2016) Analysis on vibration and acoustic joint mechanical fault diagnosis of high voltage vacuum circuit based on wavelet packet energy relative entropy, in Discharges and Electrical Insulation in Vacuum (ISDEIV), 2016 27th International Symposium, pp. 1–4Google Scholar
  18. 18.
    Fan X, Zuo MJ (2006) Gearbox fault detection using Hilbert and wavelet packet transform. Mech Syst Signal Process 20(4):966–982.  https://doi.org/10.1016/j.ymssp.2005.08.032 CrossRefGoogle Scholar
  19. 19.
    Barkov AV, Barkova NA (1996) Diagnostic of gearing and geared couplings using spectrum methods, in Proc. of the 20th Annual Meeting of the Vibration Institute, Saint Louis, Missouri, USAGoogle Scholar
  20. 20.
    Dunton TA (1999) An introduction to time waveform analysis, Universal Technologies, IncGoogle Scholar
  21. 21.
    Randall R, Hee J (1981) Cepstrum analysis’ Bruel and Kjaer Technical Review No. 3Google Scholar
  22. 22.
    Christian K, Mureithi N, Lakis A, , Thomas M (2007) On the use of time synchronous averaging, independent component analysis and support vector machines for bearing fault diagnosis, in First international conference on industrial risk EngineeringGoogle Scholar
  23. 23.
    Li C, Sánchez R-V, Zurita G, Cerrada M, Cabrera D (2016) Fault diagnosis for rotating machinery using vibration measurement deep statistical feature learning. Sensors 16(6):895.  https://doi.org/10.3390/s16060895 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • A. Slimane
    • 1
  • S. Kebdani
    • 1
  • B. Bouchouicha
    • 2
  • M. Benguediab
    • 2
  • S. Slimane
    • 1
  • K. Bahram
    • 2
  • M. Chaib
    • 3
  • N. Sardi
    • 1
  1. 1.Laboratoire de Mécanique Appliquée, Département de Génie MécaniqueUniversité des Sciences et de la Technologie d’Oran Mohamed Boudiaf, USTO-MBOranAlgerie
  2. 2.Laboratory of Materials and Reactive Systems (LMSR), Department of Mechanical EngineeringUniversity of Sidi-Bel-AbbesSidi Bel AbbesAlgeria
  3. 3.Laboratory of Structures and Solids Mechanics (LMSS), Faculty of TechnologyUniversity of Sidi-Bel-AbbesSidi Bel AbbesAlgeria

Personalised recommendations