Surface grinding of CFRP composites using rotary ultrasonic machining: a comparison of workpiece machining orientations

  • Hui Wang
  • Fuda Ning
  • Yingbin Hu
  • Weilong CongEmail author


The carbon fiber reinforced plastic (CFRP) composites have superior properties of high modulus-to-weight ratio, high strength-to-weight ratio, good durability, high corrosion resistance, and low thermal expansion coefficient. These properties make them attractive in many different applications, such as aerospace, medical, transportation, and sporting goods. However, CFRP’s properties of anisotropy, inhomogeneity, and abrasive properties of carbon fibers in CFRP composites generate many problems, including high cutting forces, high torque, delamination, high tool wear, decomposition of matrix material, etc., in traditional grinding processes. Surface grinding of CFRP composites using rotary ultrasonic machining (RUM) is used to decrease these problems. However, there is no investigation on effects of workpiece machining orientations in such a process. This investigation, for the first time, studies effects of workpiece machining orientations and machining variables (including tool rotation speed, feedrate, and ultrasonic power) on output variables (including both cutting force in feeding direction and cutting force in axial direction, torque, and surface roughness). The results show that lower cutting forces and torque are generated by using 90° workpiece machining orientation and lower surface roughness is produced by using 0° workpiece machining orientation. The results are discussed and analyzed, and they will fill in the research gaps in RUM surface grinding of CFRP composites.


CFRP composite Surface grinding Rotary ultrasonic machining Machining orientations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Funding information

The work was supported by U.S. National Science Foundation through award CMMI-1538381.


  1. 1.
    Hu NS, Zhang LC (2004) Some observations in grinding unidirectional carbon fibre-reinforced plastics. J Mater Process Technol 152(3):333–338. CrossRefGoogle Scholar
  2. 2.
    Marinescu, I. D., Hitchiner, M. P., Uhlmann, E., Rowe, W. B., & Inasaki, I. (2006). Handbook of machining with grinding wheels. CRC Press,
  3. 3.
    Black, J. T., & Kohser, R. A. (2012). DeGarmo's materials and processes in manufacturing. 11th ed. Hoboken, NJ: John Wiley & Sons, Inc.Google Scholar
  4. 4.
    Soo SL, Shyha IS, Barnett T, Aspinwall DK, Sim WM (2012) Grinding performance and workpiece integrity when superabrasive edge routing carbon fibre reinforced plastic (CFRP) composites. CIRP Ann-Manuf Technol 61(1):295–298. CrossRefGoogle Scholar
  5. 5.
    Hu NS, Zhang LC (2003) A study on the grindability of multidirectional carbon fibre-reinforced plastics. J Mater Process Technol 140(1):152–156. CrossRefGoogle Scholar
  6. 6.
    Sasahara H, Kikuma T, Koyasu R, Yao Y (2014) Surface grinding of carbon fiber reinforced plastic (CFRP) with an internal coolant supplied through grinding wheel. Precis Eng 38(4):775–782. CrossRefGoogle Scholar
  7. 7.
    Wang XM, Zhang LC (2003) An experimental investigation into the orthogonal cutting of unidirectional fibre reinforced plastics. Int J Mach Tools Manuf 43(10):1015–1022. CrossRefGoogle Scholar
  8. 8.
    Che D, Saxena I, Han P, Guo P, Ehmann KF (2014) Machining of carbon fiber reinforced plastics/polymers: a literature review. J Manuf Sci Eng 136(3):034001. CrossRefGoogle Scholar
  9. 9.
    Cong WL, Pei ZJ, Deines TW, Treadwell C (2011) Rotary ultrasonic machining of CFRP using cold air as coolant: feasible regions. J Reinf Plast Compos 30(10):899–906. CrossRefGoogle Scholar
  10. 10.
    Cong WL, Pei ZJ, Feng Q, Deines TW, Treadwell C (2012) Rotary ultrasonic machining of CFRP: a comparison with twist drilling. J Reinf Plast Compos 31(5):313–321. CrossRefGoogle Scholar
  11. 11.
    Cong, W. L., Feng, Q., Pei, Z. J., Deines, T. W., & Treadwell, C. (2012). Rotary ultrasonic machining of carbon fiber-reinforced plastic composites: using cutting fluid vs. cold air as coolant. Journal of Composite Materials 46(14):745-1753.
  12. 12.
    Cong WL, Pei ZJ, Deines TW, Srivastava A, Riley L, Treadwell C (2012) Rotary ultrasonic machining of CFRP composites: a study on power consumption. Ultrasonics 52(8):1030–1037. CrossRefGoogle Scholar
  13. 13.
    Liu D, Cong WL, Pei ZJ, Tang Y (2012) A cutting force model for rotary ultrasonic machining of brittle materials. Int J Mach Tools Manuf 52(1):77–84. CrossRefGoogle Scholar
  14. 14.
    Liu D, Tang Y, Cong WL (2012) A review of mechanical drilling for composite laminates. Compos Struct 94(4):1265–1279. CrossRefGoogle Scholar
  15. 15.
    Cong WL, Pei ZJ, Deines TW, Liu DF, Treadwell C (2013) Rotary ultrasonic machining of CFRP/Ti stacks using variable feedrate. Compos Part B 52:303–331. CrossRefGoogle Scholar
  16. 16.
    Cong WL, Pei ZJ, Sun X, Zhang CL (2014) Rotary ultrasonic machining of CFRP: a mechanistic predictive model for cutting force. Ultrasonics 54(2):663–675. CrossRefGoogle Scholar
  17. 17.
    Cong WL, Ning FD (2015) Chapter 2 rotary ultrasonic machining of CFRP composites. In: Davim JP (ed) Machinability of fibre-reinforced plastics. Walter de Gruyter GmbH & Co KG, Berlin, pp 31–81. Google Scholar
  18. 18.
    Ning FD, Cong WL, Pei ZJ, Treadwell C (2016) Rotary ultrasonic machining of CFRP: a comparison with grinding. Ultrasonics 66:125–132. CrossRefGoogle Scholar
  19. 19.
    Zheng JX, Xu JW (2006) Experimental research on the ground surface quality of creep feed ultrasonic grinding ceramics (Al2O3). Chin J Aeronaut 19(4):359–365. CrossRefGoogle Scholar
  20. 20.
    Tawakoli T, Azarhoushang B, Rabiey M (2009) Ultrasonic assisted dry grinding of 42CrMo4. Int J Adv Manuf Technol 42(9–10):883–891. CrossRefGoogle Scholar
  21. 21.
    Cao J, Wu Y, Li J, Zhang Q (2015) A grinding force model for ultrasonic assisted internal grinding (UAIG) of SiC ceramics. Int J Adv Manuf Technol 81(5–8):875–885. CrossRefGoogle Scholar
  22. 22.
    Liang Z, Wu Y, Wang X, Zhao W (2010) A new two-dimensional ultrasonic assisted grinding (2D-UAG) method and its fundamental performance in monocrystal silicon machining. Int J Mach Tools Manuf 50(8):728–736. CrossRefGoogle Scholar
  23. 23.
    Nik MG, Movahhedy MR, Akbari J (2012) Ultrasonic-assisted grinding of Ti6Al4V alloy. Procedia CIRP 1:353–358. CrossRefGoogle Scholar
  24. 24.
    Chen H, Tang J, Zhou W (2013) An experimental study of the effects of ultrasonic vibration on grinding surface roughness of C45 carbon steel. Int J Adv Manuf Technol 68(9–12):2095–2098. CrossRefGoogle Scholar
  25. 25.
    Wang H, Ning FD, Hu YB, Fernando PKSC, Pei ZJ, Cong WL (2016) Surface grinding of carbon fiber–reinforced plastic composites using rotary ultrasonic machining: effects of tool variables. Adv Mech Eng 8(9):1687814016670284Google Scholar
  26. 26.
    Liu S, Chen T, Wu C (2016) Rotary ultrasonic face grinding of carbon fiber reinforced plastic (CFRP): a study on cutting force model. Int J Adv Manuf Technol:1–10Google Scholar
  27. 27.
    Ning FD, Cong WL, Wang H, Hu YB, Hu ZL, Pei ZJ (2017) Surface grinding of CFRP composites with rotary ultrasonic machining: a mechanistic model on cutting force in the feed direction. Int J Adv Manuf Technol:1–13Google Scholar
  28. 28.
    Pei ZJ, Prabhakar D, Ferreira PM, Haselkorn M (1995) A mechanistic approach to the prediction of material removal rates in rotary ultrasonic machining. J Eng Ind 117(2):142–151. CrossRefGoogle Scholar
  29. 29.
    Kwak JS, Kim YS (2008) Mechanical properties and grinding performance on aluminum-based metal matrix composites. J Mater Process Technol 201(1):596–600. CrossRefGoogle Scholar
  30. 30.
    Ronald BA, Vijayaraghavan L, Krishnamurthy R (2009) Studies on the influence of grinding wheel bond material on the grindability of metal matrix composites. Mater Des 30(3):679–686. CrossRefGoogle Scholar
  31. 31.
    Tawakoli T, Azarhoushang B (2011) Intermittent grinding of ceramic matrix composites (CMCs) utilizing a developed segmented wheel. Int J Mach Tools Manuf 51(2):112–119. CrossRefGoogle Scholar
  32. 32.
    KoPlev A, Lystrup A, Vorm T (1983) The cutting process, chips, and cutting forces in machining CFRP. Composites 14(4):371–376. CrossRefGoogle Scholar
  33. 33.
    Bhaduri D, Soo SL, Novovic D, Aspinwall DK, Harden P, Waterhouse C, Bohr S, Mathieson AC, Lucas M (2013) Ultrasonic assisted creep feed grinding of Inconel 718. Procedia CIRP 6:615–620. CrossRefGoogle Scholar
  34. 34.
    Hocheng H, Puw HY, Huang Y (1993) Preliminary study on milling of unidirectional carbon fibre-reinforced plastics. Compos Manuf 4(2):103–108. CrossRefGoogle Scholar
  35. 35.
    Shamray S, Daneshi A, Azarhoushang B (2016) High efficiency, high speed grinding of a composite material consisting of polymer concrete and steel structures. Procedia CIRP 46:607–610. CrossRefGoogle Scholar
  36. 36.
    Marinescu, I. D., Rowe, W. B., Dimitrov, B., et al. (2004). Tribology of abrasive machining processes. Norwich, NY: William Andrew Publishing.Google Scholar
  37. 37.
    Ning FD, Wang H, Cong WL, Fernando PKSC (2017) A mechanistic ultrasonic vibration amplitude model during rotary ultrasonic machining of CFRP composites. Ultrasonics 76:44–51. CrossRefGoogle Scholar
  38. 38.
    Wang Y, Lin B, Wang S, Cao X (2014) Study on the system matching of ultrasonic vibration assisted grinding for hard and brittle materials processing. Int J Mach Tools Manuf 77:66–73. CrossRefGoogle Scholar
  39. 39.
    Ning FD, Wang H, Hu YB, Cong WL, Zhang M, Li YZ (2017) Rotary ultrasonic surface machining of CFRP composites: a comparison with conventional surface grinding. Procedia Manuf 10:557–567. CrossRefGoogle Scholar
  40. 40.
    Cong WL, Pei ZJ, Deines T, Wang QG, Treadwell C (2010) Rotary ultrasonic machining of stainless steels: empirical study of machining variables. Int J Manuf Res 5(3):370–386. CrossRefGoogle Scholar
  41. 41.
    Jia, Z. Y., Fu, R., Wang, F. J., Qian, B., & He, C. (2016). Temperature effects in end milling carbon fiber reinforced polymer composites. Polymer Composites. Epub ahead of print 1 March 2016.
  42. 42.
    Denkena B, Köhler J, Hahmann D (2012) Grinding of steel-ceramic-composites. Int J Abras Technol 5(2):152–174. CrossRefGoogle Scholar
  43. 43.
    Dandekar CR, Shin YC (2012) Modeling of machining of composite materials: a review. Int J Mach Tools Manuf 57:102–121. CrossRefGoogle Scholar
  44. 44.
    Jia ZY, Su YL, Niu B, Zhang BY, Wang FJ (2016) The interaction between the cutting force and induced sub-surface damage in machining of carbon fiber-reinforced plastics. J Reinf Plast Compos 35(9):712–726. CrossRefGoogle Scholar
  45. 45.
    Jia ZY, Fu R, Niu B, Qian BW, Bai Y, Wang FJ (2016) Novel drill structure for damage reduction in drilling CFRP composites. Int J Mach Tools Manuf 110:55–65. CrossRefGoogle Scholar
  46. 46.
    Li ZC, Jiao Y, Deines TW, Pei ZJ, Treadwell C (2005) Rotary ultrasonic machining of ceramic matrix composites: feasibility study and designed experiments. Int J Mach Tools Manuf 45(12):1402–1411. CrossRefGoogle Scholar
  47. 47.
    Chatelain JF, Zaghbani I, Monier J (2012) Effect of ply orientation on roughness for the trimming process of CFRP laminates. World Acad Sci Eng Technol 68:1204–1210Google Scholar
  48. 48.
    Zhang Q, To, S, Zhao Q, Guo B (2016) Surface generation mechanism of WC/Co and RB-SiC/Si composites under high spindle speed grinding (HSSG). Int J Refract Met Hard Mater 56:123–131. CrossRefGoogle Scholar
  49. 49.
    Rajasekaran T, Palanikumar K, Vinayagam BK (2012) Turning CFRP composites with ceramic tool for surface roughness analysis. Procedia Eng 38:2922–2929. CrossRefGoogle Scholar
  50. 50.
    Reddy NSK, Kwang-Sup S, Yang M (2008) Experimental study of surface integrity during end milling of Al/SiC particulate metal–matrix composites. J Mater Process Technol 201(1):574–579. CrossRefGoogle Scholar
  51. 51.
    Wang, H., Hu, Y. B., Ning, F. D., Li, Y. Z., Zhang, M., Cong, W. L., & Smallwood, S. (2017, June). Surface Grinding of CFRP Composites Using Rotary Ultrasonic Machining: Effects of Ultrasonic Power. ASME. International Manufacturing Science and Engineering Conference, Volume 1: Processes ():V001T02A045.
  52. 52.
    Hu, Y. B., Wang, H., Ning, F. D., Cong, W. L., & Li, Y. Z. (2017, June). Surface Grinding of Optical BK7/K9 Glass Using Rotary Ultrasonic Machining: An Experimental Study. ASME. International Manufacturing Science and Engineering Conference, Volume 1: Processes ():V001T02A014.

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Industrial, Manufacturing, and Systems EngineeringTexas Tech UniversityLubbockUSA

Personalised recommendations