Milling stability prediction and adaptive chatter suppression considering helix angle and bending

  • Chenxi Wang
  • Xingwu Zhang
  • Hongrui Cao
  • Xuefeng Chen
  • Jiawei Xiang
ORIGINAL ARTICLE
  • 113 Downloads

Abstract

In milling process, chatter is one of the most unfavorable factors, which will reduce surface quality, limit tool life, accelerate tool wear, and decrease machining efficiency. To solve this problem, a great deal of research has been done in milling dynamic modeling and chatter suppression. In this paper, a new milling force calculation method considering helix angle and bending is presented, in which the instantaneous cutting area is calculated in an improved way. The milling dynamic equations are established based on the proposed model, and the stability limit is obtained with semi discretization method (SDM). Results show that tool bending and helix play important roles in stability lobe diagram (SLD). Subsequently, the stability prediction is verified in the milling experiment. Stability analysis can just provide the guidance for selection of milling parameters. In order to get higher efficiency and larger stable region, the time-domain least mean square (LMS) adaptive algorithm is constructed and implemented for chatter suppression in this article. For the sake of applying the method to experiments, the smart toolholder equipped with piezoelectric stack actuators is designed and mounted to a three-axis milling machine. The experimental results show that this method can suppress chatter effectively.

Keywords

Helical end mills Tool bending Dynamic modeling Chatter suppression LMS algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kayhan M, Budak E (2009) An experimental investigation of chatter effects on tool life. Proc Inst Mech Eng B J Eng Manuf 223(11):1455–1463.  https://doi.org/10.1243/09544054JEM1506 CrossRefGoogle Scholar
  2. 2.
    Taylor FW (1907) On the art of cutting metals. Trans ASME 28:31–58Google Scholar
  3. 3.
    Tobias SA (1965) Machine tool vibration. Blackie and Sons, LondonGoogle Scholar
  4. 4.
    Koenigsbeger F, Tlusty J (1970) Machine tool structures. Pergamon Press, OxfordGoogle Scholar
  5. 5.
    Altintas Y, Budak E (1995) Analytical prediction of stability lobes in milling. CIRP Ann Manuf Technol 44(1):357–362.  https://doi.org/10.1016/S0007-8506(07)62342-7 CrossRefGoogle Scholar
  6. 6.
    Insperger T, Muñoa J, Zatarain M, Peigné G (2006) Unstable islands in the stability chart of milling processes due to the helix angle. CIRP 2nd International Conference on High Performance Cutting, Vancouver, Canada, pp 12–13Google Scholar
  7. 7.
    Schmitz TL, Couey J, Marsh E, Mauntler N, Hughes D (2007) Runout effect in milling: surface finish, surface location error and stability. Int J Mach Tools Manuf 47(5):841–851.  https://doi.org/10.1016/j.ijmachtools.2006.06.014 CrossRefGoogle Scholar
  8. 8.
    Tang AJ, Liu ZQ (2009) Three-dimensional stability lobe and maximum material removal rate in end milling of thin-walled plate. Int J Adv Manuf Technol 43(1-2):33–39.  https://doi.org/10.1007/s00170-008-1695-y CrossRefGoogle Scholar
  9. 9.
    Tyler C, Schmitz T (2013) Analytical process damping stability prediction. J Manuf Process 15(1):69–76.  https://doi.org/10.1016/j.jmapro.2012.11.006 CrossRefGoogle Scholar
  10. 10.
    Balachandran B (2001) Nonlinear dynamics of milling processes. Philos Trans R Soc Lond A 359(1781):793–819.  https://doi.org/10.1098/rsta.2000.0755 CrossRefMATHGoogle Scholar
  11. 11.
    Balachandran B, Zhao MX (2000) A mechanics based model for study of dynamics of milling operations. Meccanica 35(2):89–109.  https://doi.org/10.1023/A:1004887301926 CrossRefMATHGoogle Scholar
  12. 12.
    Long X, Balachandran B (2010) Stability of up-milling and down-milling operations with variable spindle speed. J Vibration Control 16(16):1151–1168.  https://doi.org/10.1177/1077546309341131 MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Yang Y, Zhang WH, Ma YC, Wan M (2016) Chatter prediction for the peripheral milling of thin-walled workpieces with curved surfaces. Int J Mach Tools Manuf 109:36–48.  https://doi.org/10.1016/j.ijmachtools.2016.07.002 CrossRefGoogle Scholar
  14. 14.
    Totis G (2017) Breakthrough of regenerative chatter modeling in milling by including unexpected effects arising from tooling system deflection. Int J Adv Manuf Technol 89(9–12):2515–2534.  https://doi.org/10.1007/s00170-016-9855-y CrossRefGoogle Scholar
  15. 15.
    Totis G, Albertelli P, Torta M, Sortino M, Monno M (2017) Upgraded stability analysis of milling operations by means of advanced modeling of tooling system bending. Int J Mach Tools Manuf 113C:19–34CrossRefGoogle Scholar
  16. 16.
    Cao H, Zhang X, Chen X (2017) The concept and progress of intelligent spindles: a review. Int J Machine Tools Manuf 112:21–52.  https://doi.org/10.1016/j.ijmachtools.2016.10.005 CrossRefGoogle Scholar
  17. 17.
    Dohner JL, Lauffer JP, Hinnerichs TD, Shankar N, Regelbrugge M, Kwan CM, Xu R, Winterb B (2004) Mitigation of chatter instabilities by active structural control. J Sound Vib 269(1-2):197–211.  https://doi.org/10.1016/S0022-460X(03)00069-5 CrossRefGoogle Scholar
  18. 18.
    Van Dijk NJM (2011) Active chatter control in high-speed milling processes. Dissertation, Eindhoven University of TechnologyGoogle Scholar
  19. 19.
    Huang T, Chen Z, Zhang HT, Ding H (2015) Active control of an AMBs supported spindle for chatter suppression in milling process. J Dyn Syst Meas Control 137(11):111003.  https://doi.org/10.1115/1.4030841 CrossRefGoogle Scholar
  20. 20.
    Monnin J, Kuster F, Wegener K (2014) Optimal control for chatter mitigation in milling—part 1: modeling and control design. Control Eng Pract 24:156–166.  https://doi.org/10.1016/j.conengprac.2013.11.010 CrossRefGoogle Scholar
  21. 21.
    Monnin J, Kuster F, Wegener K (2014) Optimal control for chatter mitigation in milling—part 2: experimental validation. Control Eng Pract 24:167–175.  https://doi.org/10.1016/j.conengprac.2013.11.011 CrossRefGoogle Scholar
  22. 22.
    Verschuren T (2009) Active chatter control in high-speed milling using μ-synthesis. Dissertation, Eindhoven University of TechnologyGoogle Scholar
  23. 23.
    Dijk NJM, Wouw N, Doppenberg EJJ, Oosterling JAJ, Nijmeijer H (2012) Robust active chatter control in the high-speed milling process. IEEE Trans Control Syst Technol 20(4):901–917.  https://doi.org/10.1109/TCST.2011.2157160 CrossRefGoogle Scholar
  24. 24.
    Zhang HT, Wu Y, He DF, Zhao H (2015) Model predictive control to mitigate chatters in milling processes with input constraints. Int J Mach Tools Manuf 91:54–61.  https://doi.org/10.1016/j.ijmachtools.2015.01.002 CrossRefGoogle Scholar
  25. 25.
    Rashid A, Nicolescu CM (2006) Active vibration control in palletised workholding system for milling. Int J Mach Tools Manuf 46(12–13):1626–1636.  https://doi.org/10.1016/j.ijmachtools.2005.08.020 CrossRefGoogle Scholar
  26. 26.
    Jia ZM, Xiang YK, Ji Huan GE, Nie WM (2017) Design and experimental study of cutting chatter control system based on filtered-X LMS. Mach Tool Hydraul 45(6):100–104. http://www.en.cnki.com.cn/Article_en/CJFDTotal-JCYY201706018.htm
  27. 27.
    Zhang X, Wang C, Gao RX, Yan R, Chen X, Wang S (2016) A novel hybrid error criterion-based active control method for on-line milling vibration suppression with piezoelectric actuators and sensors. Sensors 16(1):68.  https://doi.org/10.3390/s16010068 CrossRefGoogle Scholar
  28. 28.
    Wang C, Zhang X, Liu Y, Cao H, Chen X (2018) Stiffness variation method for milling chatter suppression via piezoelectric stack actuators. Int J Mach Tools Manuf 124:53–66.  https://doi.org/10.1016/j.ijmachtools.2017.10.002 CrossRefGoogle Scholar
  29. 29.
    Long XH, Balachandran B (2007) Stability analysis for milling process. Nonlinear Dyn 49(3):349–359.  https://doi.org/10.1007/s11071-006-9127-8 CrossRefMATHGoogle Scholar
  30. 30.
    Gross D, Ehlers W, Wriggers P, Schröder J, Müller R (2017) Mechanics of materials—formulas and problems. Springer, Berlin Heidelberg.  https://doi.org/10.1007/978-3-662-53880-7 CrossRefMATHGoogle Scholar
  31. 31.
    Altintas Y (2012) Manufacturing automation; metal cutting mechanics, machine tool vibrations and CNC design. Cambridge University Press, CambridgeGoogle Scholar
  32. 32.
    Stephenson DA, Agapiou JS (2016) Metal cutting theory and practice. CRC Press, Boca Raton.  https://doi.org/10.1201/b19559 CrossRefGoogle Scholar
  33. 33.
    Insperger T, Stepan G (2004) Updated semi-discretization method for periodic delay-differential equations with discrete delay. Int J Numer Methods Eng 61(1):117–141.  https://doi.org/10.1002/nme.1061 MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2017

Authors and Affiliations

  • Chenxi Wang
    • 1
  • Xingwu Zhang
    • 1
  • Hongrui Cao
    • 1
  • Xuefeng Chen
    • 1
  • Jiawei Xiang
    • 2
  1. 1.State Key Laboratory for Manufacturing System Engineering, School of Mechanical EngineeringXi’an Jiaotong UniversityXi’anPeople’s Republic of China
  2. 2.Zhejiang Provincial Key Laboratory of Laser Processing Robot/Key Laboratory of Laser Precision Processing & DetectionWenzhou UniversityWenzhouPeople’s Republic of China

Personalised recommendations