Effect of technological parameters on microstructure and accuracy of B1500HS steel parts in the hot blanking

ORIGINAL ARTICLE
  • 72 Downloads

Abstract

Hot blanking process could be used for producing diverse fine blanking parts with comprehensive mechanical properties and to solve the problems in the piercing and trimming of press-hardened parts. To explore the optimal hot blanking process and evaluate the effects of some technological parameters on the phase transformation, fracture quality, and dimensional accuracy of the parts, several different blanking temperatures (450–800 °C) and die clearances (8–25%) were used in the hot blanking of B1500HS steel. The experimental results show that as the blanking temperature increases at a certain die clearance, the dimensional accuracy shows a trend of “negative growth–positive growth–negative growth,” and a higher dimensional accuracy of blanked parts can be attained at blanking temperatures 450–500, 600–650, or 750–800 °C. Besides, the burnish zone width increases, and the burnish and rollover zone widths account for ~ 80% of the steel sheet thickness at 800 °C. At blanking temperatures 650–800 °C, the microstructure of blanked parts is completely martensite, the microhardness of parts is ~ 550 HV, and the perpendicularity of fracture increases as the blanking temperature increases. Parts with a high-dimensional accuracy, better fracture perpendicularity, wide burnish zone, better mechanical properties, and wear resistance can be obtained at blanking temperatures 750–800 °C.

Keywords

Hot blanking Dimensional accuracy Microstructure Boron steel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Li HP, He LF, Zhao GQ, Zhang L (2013) Constitutive relationships of hot stamping boron steel B1500HS based on the modified Arrhenius and Johnson-Cook model. Mater Sci Eng A 580:330–348.  https://doi.org/10.1016/j.msea.2013.05.023. CrossRefGoogle Scholar
  2. 2.
    Naderi M, Durrenberger L, Molinari A, Bleck W (2008) Constitutive relationships for 22MnB5 boron steel deformed isothermally at high temperatures. Mater Sci Eng A 478(1-2):130–139.  https://doi.org/10.1016/j.msea.2007.05.094 CrossRefGoogle Scholar
  3. 3.
    Jiang C, Shan ZD, Zhuang BL, Zhang ML, Xu Y (2012) Hot stamping die design for vehicle door beams using ultra-high strength steel. Int J Precis Eng Manuf 13(7):1101–1106.  https://doi.org/10.1007/s12541-012-0144-x CrossRefGoogle Scholar
  4. 4.
    Wang WR, Zhang L, Guo MX, Huang L, Wei XC (2016) Non-isothermal deformation behavior and FE simulation of ultrahigh strength BR1500HS steel in hot stamping process. Int J Adv Manuf Technol 87(1–15):2951–2965.  https://doi.org/10.1007/s00170-016-8656-7 CrossRefGoogle Scholar
  5. 5.
    Ying X, Shan ZD (2014) Design parameter investigation of cooling systems for UHSS hot stamping dies. Int J Adv Manuf Technol 70(1-4):257–262.  https://doi.org/10.1007/s00170-013-5272-7 CrossRefGoogle Scholar
  6. 6.
    Wang M, Zhang C, Xiao HF, Li B (2016) Inverse evaluation of equivalent contact heat transfer coefficient in hot stamping of boron steel. Int J Adv Manuf Technol 87(9-12):1–8.  https://doi.org/10.1007/s00170-016-8678-1 Google Scholar
  7. 7.
    Hu P, Ying L, Li Y, Liao ZW (2013) Effect of oxide scale on temperature-dependent interfacial heat transfer in hot stamping process. J Mater Process Technol 213(9):1475–1483.  https://doi.org/10.1016/j.jmatprotec.2013.03.010 CrossRefGoogle Scholar
  8. 8.
    Kim HY, Park JK, Lee MG (2014) Phase transformation-based finite element modeling to predict strength and deformation of press-hardened tubular automotive part. Int J Adv Manuf Technol 70(9-12):1787–1801.  https://doi.org/10.1007/s00170-013-5424-9 CrossRefGoogle Scholar
  9. 9.
    Bok HH, Kim SN, Suh DW, Barlat F, Lee MG (2015) Non-isothermal kinetics model to predict accurate phase transformation and hardness of 22MnB5 boron steel. Mater Sci Eng A 626:67–73.  https://doi.org/10.1016/j.msea.2014.12.008 CrossRefGoogle Scholar
  10. 10.
    Nikravesh M, Naderi M, Akbari GH, Bleck W (2015) Phase transformations in a simulated hot stamping process of the boron bearing steel. Mater Des 84:18–24.  https://doi.org/10.1016/j.matdes.2015.06.108 CrossRefGoogle Scholar
  11. 11.
    Naderi M, Saeed-Akbari A, Bleck W (2008) The effects of non-isothermal deformation on martensitic transformation in 22MnB5 steel. Mater Sci Eng A 487(1-2):445–455.  https://doi.org/10.1016/j.msea.2007.10.057 CrossRefGoogle Scholar
  12. 12.
    Min JY, Lin JP, Min YA (2013) Effect of thermo-mechanical process on the microstructure and secondary-deformation behavior of 22MnB5 steels. J Mater Process Technol 213(6):818–825.  https://doi.org/10.1016/j.jmatprotec.2012.12.012 CrossRefGoogle Scholar
  13. 13.
    Hu P, Liu WQ, Ying L, Zhang JH, Wang DT (2017) A thermal forming limit prediction method considering material damage for 22MnB5 sheet. Int J Adv Manuf Technol 92(1-4):627–638.  https://doi.org/10.1007/s00170-017-0195-3 CrossRefGoogle Scholar
  14. 14.
    Mori K, Maeno T, Fuzisaka S (2012) Punching of ultra-high strength steel sheets using local resistance heating of shearing zone. J Mater Process Technol 212(2):534–540.  https://doi.org/10.1016/j.jmatprotec.2011.10.021 CrossRefGoogle Scholar
  15. 15.
    Mori K, Saito S, Maki S (2008) Warm and hot punching of ultra high strength steel sheet. CIRP Ann Manuf Technol 57(1):321–324.  https://doi.org/10.1016/j.cirp.2008.03.125 CrossRefGoogle Scholar
  16. 16.
    Mori K, Maeno T, Maruo Y (2012) Punching of small hole of die-quenched steel sheets using local resistance heating. CIRP Ann Manuf Technol 61(1):255–258.  https://doi.org/10.1016/j.cirp.2012.03.124 CrossRefGoogle Scholar
  17. 17.
    Mori K, Maeno T, Suganami T, Sakagami M (2014) Hot semi-punching of quenchable steel sheet. Procedia Eng 81:1762–1767.  https://doi.org/10.1016/j.proeng.2014.10.228 CrossRefGoogle Scholar
  18. 18.
    Liu HS, Lei CX (2014) Local heating-aided hot blanking of quenched ultra-high-strength steel BR1500HS. Int J Adv Manuf Technol 77(1-4):629–641.  https://doi.org/10.1007/s00170-014-6479-y CrossRefGoogle Scholar
  19. 19.
    So H, Faßmann D, Hoffmann H, Golle R, Schaper M (2012) An investigation of the blanking process of the quenchable boron alloyed steel 22MnB5 before and after hot stamping process. J Mater Process Technol 212(2):437–449.  https://doi.org/10.1016/j.jmatprotec.2011.10.006 CrossRefGoogle Scholar
  20. 20.
    Choi HS, Kim BM, Kim DH, Ko DC (2014) Application of mechanical trimming to hot stamped 22MnB5 parts for energy saving. Int J Precis Eng Manuf 15(6):1087–1093.  https://doi.org/10.1007/s12541-014-0441-7 CrossRefGoogle Scholar
  21. 21.
    Min JY, Lin JP, Min YA, Li FF (2012) On the ferrite and bainite transformation in isothermally deformed 22MnB5 steels. Mater Sci Eng A 550:375–387.  https://doi.org/10.1016/j.msea.2012.04.091 CrossRefGoogle Scholar
  22. 22.
    Li HP, Zhao GQ, Niu ST, Huang CZ (2007) FEM simulation of quenching process and experimental verification of simulation results. Mater Sci Eng A 452-453:705–714.  https://doi.org/10.1016/j.msea.2006.11.023 CrossRefGoogle Scholar
  23. 23.
    Ridley N (1984) A review of the data on the interlamellar spacing of pearlite. Metall Trans A 15A(6):1019–1036.  https://doi.org/10.1007/BF02644694 CrossRefGoogle Scholar
  24. 24.
    Mazancová MK (1997) Physical metallurgy characteristics of the M/A constituent formation in granular bainite. J Mater Process Technol 64(1-3):287–292.  https://doi.org/10.1016/S0924-0136(96)02578-2 CrossRefGoogle Scholar
  25. 25.
    Barcellona A, Palmeri D (2009) Effect of plastic hot deformation on the hardness and continuous cooling transformations of 22MnB5 microalloyed boron steel. Metall Mater Trans A 40(5):1160–1174.  https://doi.org/10.1007/s11661-009-9790-8 CrossRefGoogle Scholar
  26. 26.
    Nikravesh M, Naderi M, Akbari GH (2012) Influence of hot plastic deformation and cooling rate on martensite and bainite start temperatures in 22MnB5 steel. Mater Sci Eng A 540:24–29.  https://doi.org/10.1016/j.msea.2012.01.018 CrossRefGoogle Scholar
  27. 27.
    Melander M, Nicolov J (1985) Heating and cooling transformation diagrams for the rapid heat treatment of two alloy steels. J Heat Treat 4(1):32–38.  https://doi.org/10.1007/BF02835487 CrossRefGoogle Scholar
  28. 28.
    Spezzapria M, Forzan M, Dughiero F (2016) Numerical simulation of solid – solid phase transformations during induction hardening process. IEEE Trans Magn 52(3):1–4.  https://doi.org/10.1109/TMAG.2015.2484388 CrossRefGoogle Scholar
  29. 29.
    Liu ZC, Wang HY, Ren HP, Li WX (2007) Investigation of bainite ferrite nucleation mechanism. Transactions Mater Heat Treat 28:53–57Google Scholar
  30. 30.
    Li HP, Gai K, He LF, Zhang CZ, Cui HZ, Li M (2016) Non-isothermal phase-transformation kinetics model for evaluating the austenization of 55CrMo steel based on Johnson-Mehl-Avrami equation. Mater Des 92:731–741.  https://doi.org/10.1016/j.matdes.2015.12.110 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringShandong University of Science and TechnologyQingdaoPeople’s Republic of China

Personalised recommendations