Advertisement

Design, characterization, and manufacturing of circular bellows pneumatic soft actuator

  • Tariq Rehman
  • Ahmad Athif Mohd Faudzi
  • Dyah Ekashanti Octorina Dewi
  • Mohamad Sultan Mohamad AliEmail author
ORIGINAL ARTICLE

Abstract

In the present study, the performance of silicone rubber-based bellows-structured pneumatic actuator was analyzed in terms of output bending motion and bending force with relation to input pressure. To perform the analysis, the structural parameters of length, diameter, and wall thickness were characterized and tested with two different silicone materials. The simulation analysis revealed that the stiffness of the silicone materials selected for the bellows actuator imposes strong effects on its bending motion and pneumatic input pressure requirement. Furthermore, the characterization of material-S-based bellows actuator having lengths 84, 126, and 168 mm, with a maximum diameter and a wall thickness of 14 and 1.4 mm, respectively, resulted in maximum output bending angles of 142.4°, 137.5°, and 117° at minimum pneumatic input pressures of 85.5, 66.5, and 85.5 kPa, respectively. Hence, the bellows actuator that simulated in a maximum bending angle of 142.4° was fabricated for validation and experimentally resulted in an average bending force of 9 N.

Keywords

Bellows structure Pneumatic actuator Soft robotics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asari VK, Kumar S, Kassim IM (2000) A fully autonomous microrobotic endoscopy system. J Intell Robot Syst 28(4):325–341CrossRefGoogle Scholar
  2. 2.
    Rosen M, Ponsky J (2001) Minimally invasive surgery. Endoscopy 33(4):358–366CrossRefGoogle Scholar
  3. 3.
    Cuschieri A (1995) Whither minimal access surgery: tribulations and expectations. Am J Surg 169(1):9–19CrossRefGoogle Scholar
  4. 4.
    Bemelman WA, Dunker MS, Slors JFM, Gouma DJ (2002) Laparoscopic surgery for inflammatory bowel disease: current concepts. Scand J Gastroenterol 37(236):54–59CrossRefGoogle Scholar
  5. 5.
    Schroeyers P, Wellens F, De Geest R, Degrieck I, Van Praet F, Vermeulen Y, Vanermen H (2001) Minimally invasive video-assisted mitral valve repair: short and mid-term results. J Heart Valve Dis 10(5):579–583Google Scholar
  6. 6.
    Skrekas T, Laguna MP, De La Rosette JJMCH (2005) Laparoscopic radical prostatectomy: a European virus. Minim Invasive Ther Allied Technol 14(2):98–103CrossRefGoogle Scholar
  7. 7.
    Hirose S (1993) Biologically inspired robot. Oxford University PressGoogle Scholar
  8. 8.
    Ikuta K, Tsukamoto M, & Hirose S (1988) Shape memory alloy servo actuator system with electric resistance feedback and application for active endoscope. In Robotics and Automation, IEEE International Conference 427–430Google Scholar
  9. 9.
    Otsuka K, Kakeshita T (2002) Science and technology of shape-memory alloys: new developments. MRS Bull 27(02):91–100CrossRefGoogle Scholar
  10. 10.
    Bellouard Y, Clavel R, Gotthardt R, Bidaux JE, Sidler T (1998) A new concept of monolithic shape memory alloy micro-devices used in micro-robotics. Actuator 98:499–502Google Scholar
  11. 11.
    Anthierens C (1999) Doctoral dissertation. In: Conception d’un micro robot à actionneur électropneumatique pour l’inspection intratubulaire. Lyon, INSAGoogle Scholar
  12. 12.
    Kahn H, Huff MA, Heuer AH (1998) The TiNi shape-memory alloy and its applications for MEMS. J Micromech Microeng 8(3):213CrossRefGoogle Scholar
  13. 13.
    Morgan NB (2004) Medical shape memory alloy applications-the market and its products. Mater Sci Eng A 378(1):16–23CrossRefGoogle Scholar
  14. 14.
    Ali MSM, Takahata K (2011) Wireless microfluidic control with integrated shape-memory-alloy actuators operated by field frequency modulation. J Micromech Microeng 21(7):075005CrossRefGoogle Scholar
  15. 15.
    Fu Y, Huang W, Du H, Huang X, Tan J, Gao X (2001) Characterization of TiNi shape-memory alloy thin films for MEMS applications. Surf Coat Technol 145(1):107–112CrossRefGoogle Scholar
  16. 16.
    Wang Z, Hewit J, Abel E, Slade A, Steele B (2006) Development of a shape memory alloy actuator for transanal endoscopic microsurgery. Engineering in medicine and biology society, IEEE-EMBS, Shanghai, China. pp 4341–4344Google Scholar
  17. 17.
    Reynaerts D, Peirs J, Van Brussel H (1997) An implantable drug-delivery system based on shape memory alloy micro-actuation. Sensors Actuators A Phys 61(1):455–462CrossRefGoogle Scholar
  18. 18.
    Fu Y, Du H, Huang W, Zhang S, Hu M (2004) TiNi-based thin films in MEMS applications: a review. Sensors Actuators A Phys 112(2):395–408CrossRefGoogle Scholar
  19. 19.
    Park KT, Esashi M. (1999) An active catheter with integrated circuit for communication and control. Micro Electro Mechanical SystemsCrossRefGoogle Scholar
  20. 20.
    Chapelle F (2002) Evaluation de systemes robotiques et comportements complexes par algorithmes evolutionnaires. University Pierre et Marie Curie, Paris VIGoogle Scholar
  21. 21.
    Kühl C, Dumont G (2002) Virtual endoscopy: from simulation to optimization of an active endoscope. ESAIM 12:84–93CrossRefzbMATHGoogle Scholar
  22. 22.
    Kornbluh R, Rine RP, Eckerle J, Joseph J (1998) Electrostrictive polymer artificial muscle actuators. Robotics and Automation. IEEE International Conference 3:2147–2154Google Scholar
  23. 23.
    Frecker MI, Aguilera WM (2003) Analytical modeling of a segmented unimorph actuator using electrostrictive P (VDF-TrFE) copolymer. Smart Mater Struct 13(1):82CrossRefGoogle Scholar
  24. 24.
    Faudzi AAM, Razif MRM, Nordin INAM, Suzumori K, Wakimoto S, Hirooka D (2012) Development of bending soft actuator with different braided angles. Advanced Intelligent Mechatronics, IEEE/ASME International Conference pp 1093–1098Google Scholar
  25. 25.
    Ogura K, Wakimoto S, Suzumori K, Nishioka Y (2008) Micro pneumatic curling actuator-Nematode actuator. ROBIO :462–467Google Scholar
  26. 26.
    Suzumori K, Endo S, Kanda T, Kato N Suzuki H (2007) A bending pneumatic rubber actuator realizing soft-bodied manta swimming robot. Robotics and Automation, IEEE International Conference, pp 4975–4980Google Scholar
  27. 27.
    Razif MRM, Faudzi AAM, Bavandi M, Nordin INAM, Natarajan E Yaakob O (2014) Two chambers soft actuator realizing robotic gymnotiform swimmers fin. Robotics and Biomimetics (ROBIO) IEEE International Conference, pp 15–20)Google Scholar
  28. 28.
    Wakimoto S, Ogura K, Suzumori K Nishioka Y (2009) Miniature soft hand with curling rubber pneumatic actuators, Robotics and Automation, ICRA’09. IEEE International Conference, pp 556–561Google Scholar
  29. 29.
    Cepolina F, Michelini RC (2004) Review of robotic fixtures for minimally invasive surgery. Int J Med Robot Comput Assist Surg 1(1):43–63CrossRefGoogle Scholar
  30. 30.
    Surakusumah RF, Faudzi AAM, Dewi DEO Supriyanto E, (2014) Development of a half sphere bending soft actuator for flexible bronchoscope movement, Robotics and Manufacturing Automation (ROMA) IEEE International Symposium pp 120–125Google Scholar
  31. 31.
    Kumagai I, Wakimoto S Suzumori K (2010) Development of large intestine endoscope changing its stiffness-2nd report: improvement of stiffness change device and insertion experiment. Robotics and Biomimetics (ROBIO), IEEE International Conference pp 241–246)Google Scholar
  32. 32.
    Wakimoto S, Kumagai I Suzumori K (2009) Development of large intestine endoscope changing its stiffness. Robotics and Biomimetics (ROBIO), IEEE International Conference, pp 2320–2325Google Scholar
  33. 33.
    Ozaki K, Wakimoto S, Suzumori K Yamamoto Y (2011) Novel design of rubber tube actuator improving mountability and drivability for assisting colonosocope insertion. Robotics and Automation (ICRA), IEEE International Conference, pp 3263–3268Google Scholar
  34. 34.
    Wakimoto S Suzumori K (2010) Fabrication and basic experiments of pneumatic multi-chamber rubber tube actuator for assisting colonoscope insertion. Robotics and Automation (ICRA), IEEE International Conference, pp 3260–3265Google Scholar
  35. 35.
    Onoe H, Suzumori K Wakimoto S (2008) Optimum design of pneumatic multi-chamber rubber tube actuator generating traveling deformation waves for colonoscope insertion. Advanced Intelligent Mechatronics, AIM 2008, IEEE/ASME International Conference, pp 31–36Google Scholar
  36. 36.
    Suzumori K, Hama T Kanda T (2006) New pneumatic rubber actuators to assist colonoscope insertion , Robotics and Automation. ICRA 2006, IEEE International Conference, pp 1824-1829Google Scholar
  37. 37.
    Fujiwara N, Sawano S Konishi S (2009) Linear expansion and contraction of paired pneumatic baloon bending actuators toward telescopic motion. micro electro mechanical systems, MEMS 2009. IEEE 22nd International Conference, pp 435–438Google Scholar
  38. 38.
    Mooney M (1940) A theory of large elastic deformation. J Appl Phys 11(9):582–592CrossRefzbMATHGoogle Scholar
  39. 39.
    Rivlin RS (1948) Large elastic deformations of isotropic materials. IV. Further developments of the general theory, Philos Trans R Soc London Ser A, 241(835):379–397Google Scholar
  40. 40.
    Jahani K, Mahmoodzade H (2014) Predicting the dynamic material constants of Mooney-Rivlin model in broad frequency range for elastomeric components. Latin Am J Solids Struct 11(11):1983–1998CrossRefGoogle Scholar
  41. 41.
    Feng WW Hallquist JO (2012) On Mooney-Rivlin constants for elastomers, stress (force per unit undeformed area), 1, 5Google Scholar
  42. 42.
    Rehman T, Faudzi AAM, Dewi DEO (2016) Design analysis of bending motion in single and dual chamber bellows structured soft actuators. Jurnal Teknologi 78 (6–13):17–23Google Scholar
  43. 43.
    Wang Boran, Kean C. Aw, Morteza Biglari-Abhari, Andrew McDaid (2016) Design and fabrication of a fiber-reinforced pneumatic bending actuator, In Advanced Intelligent Mechatronics, IEEE International Conference, pp 83–88Google Scholar
  44. 44.
    Nordin INAM, Faudzi AAM, Razif MRM, Natarajan E, Wakimoto S, Suzumori K (2014) Simulations of two patterns fiber weaves reinforced in rubber actuator. Jurnal Teknologi 3:133–138Google Scholar

Copyright information

© Springer-Verlag London Ltd. 2017

Authors and Affiliations

  • Tariq Rehman
    • 1
    • 2
  • Ahmad Athif Mohd Faudzi
    • 1
    • 3
  • Dyah Ekashanti Octorina Dewi
    • 4
  • Mohamad Sultan Mohamad Ali
    • 1
    Email author
  1. 1.Faculty of Electrical EngineeringUniversiti Teknologi MalaysiaSkudaiMalaysia
  2. 2.Department of Electronic EngineeringNED University of Engineering and TechnologyKarachiPakistan
  3. 3.Center for Artificial Intelligence and Robotics (CAIRO)Universiti Teknologi MalaysiaKuala LumpurMalaysia
  4. 4.Faculty of Biosciences and Medical EngineeringUniversiti Teknologi MalaysiaSkudaiMalaysia

Personalised recommendations