Precision turning of optical mandrel with high steepness axisymmetric aspheric surface using arc-edged diamond cutter

  • Tao Sun
  • Fanxing Kong
  • Yanquan GengEmail author
  • Quanquan HanEmail author


It continues to be a challenge in machining the optical mandrel with high steepness axisymmetric aspheric surface due to the high machining cost. In this study, a novel approach which uses the arc-edged diamond cutter tangent to workpiece’s meridian profile curve at the interpolation points in “XZ” 2-axis machine tool is proposed. The mathematical model is established and the maximum of rough interpolation error that is generated using this method is also calculated. The number of rough interpolation segments and coordinates of the cutter center motion trajectory are determined when the maximum rough interpolation error is less than the allowable value of the given error. It analyzes the interpolation trajectory and interpolation error to determine the position and numerical value with the maximum rough interpolation error, as well as the correlation between the interpolation error and the number of interpolation points. The experimental results show that this method could generate smaller dimensional and form error compared to traditional 2-axis contouring approach method. In addition, compared to using multi-axis ultraprecision computer numerically controlled (CNC) lathe with the B-axis, processing of high steepness aspheric in “XZ” 2-axis lathe greatly reduces the cost. This method can thus be used for precision turning of Wolter type-I extreme ultraviolet (EUV) replication mandrel with high steepness aspheric surface.


High steepness Axisymmetric aspheric surface Arc-edged diamond cutter Precise turning Optical mandrel 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zhang W, Chen SQ, Fan ZG (2016a) Conformal dome aberration correction by designing the inner surface. Opt Commun 380:15–20. doi: 10.1016/j.optcom.2016.05.062 CrossRefGoogle Scholar
  2. 2.
    Ruckman J, Pollicove H, Golini D (1999) Advanced manufacturing generates conformal optics. Laser Focus world 35(7):S13–S15Google Scholar
  3. 3.
    Aznar F, Castel J, Christensen FE, Dafni T, Decker TA, Ferrer-Ribas E, Garcia JA, Giomataris I, Garza JG, Hailey CJ, Hill RM, Iguaz FJ, Irastorza IG, Jakobsen AC, Luzon G, Mirallas H, Papaevangelou T, Pivovaroff MJ, Ruz J, Vafeiadis T, Vogel JK (2015) A micromegas-based low-background x-ray detector coupled to a slumped-glass telescope for axion research. J Cosmol Astropart P (12)008:1–19. doi: 10.1088/1475-7516/2015/12/008 Google Scholar
  4. 4.
    Aoki S, Watanabe N, Asami H, Shimada A (2016) Design of axisymmetric multi-mirror grazing incidence system to increase the numerical aperture of neutron and X-ray microscopes. Opt Rev 23(2):161–171. doi: 10.1007/s10043-016-0191-0 CrossRefGoogle Scholar
  5. 5.
    Wachulak PW, Bartnik A, Kostecki J, Wegrzynski L, Fok T, Jarocki R, Szczurek M, Fiedorowicz H (2015) Extreme ultraviolet and soft X-ray imaging with compact, table top laser plasma EUV and SXR sources. Nucl Instrum Meth B 364:40–48. doi: 10.1016/j.nimb.2015.06.004 CrossRefGoogle Scholar
  6. 6.
    Awaki H, Kunieda H, Ishida M, Matsumoto H, Babazaki Y, Demoto T, Furuzawa A, Haba Y, Hayashi T, Iizuka R, Ishibashi K, Ishida N, Itoh M, Iwase T, Kosaka T, Kurihara D, Kuroda Y, Maeda Y, Meshino Y, Mitsuishi I, Miyata Y, Miyazawa T, Mori H, Nagano H, Namba Y, Ogasaka Y, Ogi K, Okajima T, Saji S, Shimasaki F, Sato T, Sato T, Sugita S, Suzuki Y, Tachibana K, Tachibana S, Takizawa S, Tamura K, Tawara Y, Torii T, Uesugi K, Yamashita K, Yamauchi S (2014) Hard x-ray telescopes to be onboard ASTRO-H. Appl Opt 53(32):7664–7676. doi: 10.1364/AO.53.007664 CrossRefGoogle Scholar
  7. 7.
    Kuster M, Bräuninger H, Cebrián S, Davenport M, Eleftheriadis C, Englhauser J, Fischer H, Franz J, Friedrich P, Hartmann R, Heinsius FH, Hoffmann DHH, Hoffmeister G, Joux JN, Kang D, Königsmann K, Kotthaus R, Papaevangelou T, Lasseur C, Lippitsch A, Lutz G, Morales J, Rodr’ıguez A, Strüder L, Vogel J, Zioutas K (2007) The X-ray telescope of CAST. New J Phys 9 (6):169. doi:  10.1088/1367-2630/9/6/169
  8. 8.
    Ohsuka S, Ohba A, Onoda S, Nakamoto K, Nakano T, Miyoshi M, Soda K, Hamakubo T (2014) Laboratory-size three-dimensional x-ray microscope with Wolter type I mirror optics and an electron-impact water window x-ray source. Rev Sci Instrum 85(9):093701–093705. doi: 10.1063/1.4894468 CrossRefGoogle Scholar
  9. 9.
    Pan R, Zhang YJ, Ding JB, Wang ZZ, Guo YB (2014) Research on optimization of conformal polishing using continuous precession. Int J Adv Manuf Technol 78:63–71. doi: 10.1007/s00170-014-6626-5 CrossRefGoogle Scholar
  10. 10.
    Schaefer JP, Eichholtz RA, Sulzbach F (2001) Fabrication challenges associated with conformal optics. Proc SPIE 4375:128–137. doi: 10.1117/ 12.439168 CrossRefGoogle Scholar
  11. 11.
    Lambropoulos JC, Fang T, Funkenbusch PD, Jacobs SD, Cumbo MJ, Golini D (1996) Surface microroughness of optical glasses under deterministic microgrinding. Appl Opt 35(22):4448–4462. doi: 10.1364/AO.35.004448 CrossRefGoogle Scholar
  12. 12.
    Fang FZ, Zhang XD, Weckenmann A, Zhang GX, Evans C (2013) Manufacturing and measurement of freeform optics. CIRP Ann-Manuf Technol 62(2):823–846. doi: 10.1016/j.cirp.2013.05. 003 CrossRefGoogle Scholar
  13. 13.
    Ruckman JL, Fess EM, Pollicove HM (2001) Deterministic processes for manufacturing conformal (freeform) optical surfaces. Proc SPIE 4375:108–113. doi: 10.1117/12.439166 CrossRefGoogle Scholar
  14. 14.
    DeFisher S, Fess E, Wolfs F (2013) Freeform and conformal optical manufacturing. Proc SPIE 870813:1–9. doi: 10.1117/12.2016463 Google Scholar
  15. 15.
    Fess E, DeFisher S (2013) Advancements in asphere manufacturing. Proc SPIE 88380M:1–7. doi: 10.1117/12.2024852 Google Scholar
  16. 16.
    Kordonski WI, Shorey AB, Tricard M (2006) Magnetorheological jet (MR Jet™) finishing technology. J Fluid Eng-T ASME 128(1):20–26. doi: 10.1115/1.2140802 CrossRefGoogle Scholar
  17. 17.
    Goela JS, Askinazi J (1999) Fabrication of conformal ZnS domes by chemical vapor deposition. Proc SPIE 3705:227–236. doi: 10.1117/12.354627 CrossRefGoogle Scholar
  18. 18.
    Beaucamp A, Namba Y (2013) Super-smooth finishing of diamond turned hard X-ray molding dies by combined fluid jet and bonnet polishing. CIRP Ann-Manuf Technnol 62(1):315–318. doi: 10.1016/j.cirp.2013.03.010 CrossRefGoogle Scholar
  19. 19.
    Goela JS, Askinazi J, Robinson B (2001) Mandrel reusability in precision replication of ZnS conformal domes. Proc SPIE 4375:114–127. doi: 10.1117/12.439167 CrossRefGoogle Scholar
  20. 20.
    Liu YK, Tso PL (2003) The optimal diamond wheels for grinding diamond tools. Int J Adv Manuf Technol 22(5–6):396–400. doi: 10.1007/s00170-003-1545-x CrossRefGoogle Scholar
  21. 21.
    Kong FX, Li ZQ, Sun T (2014) Simulation on turning aspheric surface method via oscillating feed. Proc SPIE 9281:92812C1–92812C6. doi: 10.1117/12.2069457 CrossRefGoogle Scholar
  22. 22.
    Zhang SJ, To S, Zhang GQ (2016b) Diamond tool wear in ultra-precision machining. Int J Adv Manuf Technol 88:613–641. doi: 10.1007/s00170-016-8751-9 CrossRefGoogle Scholar
  23. 23.
    Chan CY, Li LH, Lee WB, Wong HC (2016) Monitoring life of diamond tool in ultra-precision machining. Int J Adv Manuf Technol 82:1141–1152. doi: 10.1007/s00170-015-7410-x CrossRefGoogle Scholar
  24. 24.
    He CL, Zong WJ, Sun T (2016) Origins for the size effect of surface roughness in diamond turning. Int J Mach Tool Manu 106:22–42. doi: 10.1016/j.ijmach tools.2016.04.004 CrossRefGoogle Scholar
  25. 25.
    Chen YL, Shimizu Y, Cai YD, Wang S, Ito S, Ju BF, Gao W (2015) Self-evaluation of the cutting edge contour of amicrodiamond tool with a force sensor integrated fast tool servo on an ultra-precision lathe. Int J Adv Manuf Technol 77:2257–2267. doi: 10.1007/s00170-014-6580-2 CrossRefGoogle Scholar
  26. 26.
    FANUC (2008) User’s manual of FANUC Series 0i-MODEL D Lathe system. p 472–477Google Scholar

Copyright information

© Springer-Verlag London Ltd. 2017

Authors and Affiliations

  1. 1.Center for Precision EngineeringHarbin Institute of TechnologyHarbinChina
  2. 2.College of Mechanical and Electrical EngineeringJilin Institute of Chemical TechnologyJilinChina
  3. 3.School of EngineeringCardiff UniversityCardiffUK

Personalised recommendations