Surface texturing of rolling elements by hard ball-end milling and burnishing

ORIGINAL ARTICLE
  • 95 Downloads

Abstract

Constant velocity joint shafts are machine elements within the driveshaft of cars. The tribological conditions within the raceways are characterized by mixed friction. To improve the lifetime of these machine elements, surface topography and surface integrity have to be adjusted. The positive effect of subsurface compressive residual stresses on the rolling fatigue strength for roller bearings is well known. Additionally, the positive effects of surface textures on tribological conditions in the mixed friction regime are known from cylinder liners. Within this paper, a novel approach to generate tribologically optimized surfaces by hard ball-end milling and an additional mechanical surface treatment by roller burnishing is tested and applied. First, the effects of both processes on the resulting surface topography are analyzed separately. In addition, the interactions between ball-end milling and burnishing are investigated. Concluding, this paper provides parameters to generate a plateau surface by the combination of ball-end milling and roller burnishing.

Keywords

Hard machining Ball-end milling Topography Roller burnishing Constant velocity joint 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors thank the DFG (German Research Foundation) for supporting this project (DE 44/95-2) in the context of the research program ”Resource efficient Machine Elements (SPP1551)”.

References

  1. 1.
    Breidenstein B (2010) Oberflaechen und Randzonen hoch belasteter Bauteile. Habilitation, Leibniz Universitaet HannoverGoogle Scholar
  2. 2.
    Schawch DW, Guo YB (2006) A fundamental study on the impact of surface integrity by hard turning on rolling contact fatigue. Int J Fatigue 28:1838–1844CrossRefGoogle Scholar
  3. 3.
    Gless M (2010) Waelzkontaktermuedung bei Mischreibung Dr.-Ing. Otto-von-Guericke-Universitaet Magdeburg, DissertationGoogle Scholar
  4. 4.
    Denkena B, Koehler J, Kaestner J, Goettsching T, Dinkelacker F, Ulmer H (2013) Efficient machining of microdimples for friction reduction. Journal of Micro- ad Nano-Manufacturing 1Google Scholar
  5. 5.
    Neubauer T (2016) Betriebs- und Lebensdauerverhalten hartgederehter und festgewalzter Zylinderrollenlager Dr.-Ing. Dissertation, Leibniz Universitaet HannoverGoogle Scholar
  6. 6.
    Seherr-Thoss HC, Schmelz F, Aucktor E (2006) Universal Joints and Driveshafts – Analysis, Design, Applications, 2nd Edn, SpringerGoogle Scholar
  7. 7.
    Pape F, Neubauer T, Mai O, Denkena B, Poll G (2016) Tribological investigations of angular contact ball bearings operated under small pivoting angles for production process analysis. In: Proceedings of the 7th international conference on tribology in manufacturing processes, March, Phuket, Thailand, pp 190–199Google Scholar
  8. 8.
    Yang M, Park H (1991) The prediction of cutting force in ball-end milling. Int J Mach Tools Manuf 31/1:45–54CrossRefGoogle Scholar
  9. 9.
    Lavernhe S, Quinsat Y, Lartigue C (2010) Model for the prediction of 3D surface topography in 5-axis milling. Int J Adv Manuf Technol 51:915–924CrossRefGoogle Scholar
  10. 10.
    Nespor D (2015) Randzonenbeeinflussung durch die Rekonturierung komplexer investitionsgüter aus Ti-6Al-4V Dr.-Ing. Dissertation, Leibniz Universität HannoverGoogle Scholar
  11. 11.
    Toenshoff HK, Arendt C, Ben Amor R (2000) Cutting of hardened steel. Ann CIRP 49/2:547–566CrossRefGoogle Scholar
  12. 12.
    Zhang S, Guo YB (2009) An experimental and analytical analysis on chip morphology, phase transformation oxidation, and their relationships in finish hard milling. Int J Mach Tools Manuf 49:805–813CrossRefGoogle Scholar
  13. 13.
    Lavernhe S, Quinsat Y, Lartigue C, Brown C (2014) Realistic simulation of surface defects in five-axis milling using the measured geometry of the tool. Int J Adv Manuf Technol 74:393–401CrossRefGoogle Scholar
  14. 14.
    Denkena B, Nespor D, Boess V, Koehler J (2014) Residual stresss formation after re-contouring of welded Ti-6Al-4V parts by means of 5-axis ball nose end milling. CIRP J Manuf Sci Technol 7:347–360CrossRefGoogle Scholar
  15. 15.
    Schulze V, Bleicher F, Groche P, Guo YB, Pyun YS (2016) Surface modification by machine hammer peening and burnishing. CIRP Ann Manuf Technol 65/2:809–832CrossRefGoogle Scholar
  16. 16.
    Yen YC, Sartkulvanich P, Altan T (2005) Finite element modeling of roller burnishing process. CIRP Ann Manuf Technol 54/1:237–240CrossRefGoogle Scholar
  17. 17.
    Denkena B, Poll G, Mai O, Pape F, Neubauer T (2016) Enhanced boundary zone rolling contact fatigue strength through hybrid machining by hard turn-rolling. Bearing World Journal 1:87–102Google Scholar

Copyright information

© Springer-Verlag London Ltd. 2017

Authors and Affiliations

  1. 1.Institute of Production Engineering and Machine ToolsLeibniz Universitaet HannoverHannoverGermany

Personalised recommendations