Stress corrosion cracking: characteristics, mechanisms and experimental study

  • C. A. Loto


The cracking of a metal alloy will sometimes result from the combined action of a corrodent and tensile stress, and this phenomenon is called stress corrosion cracking (SCC). Stresses that cause cracking can be residual or may be applied during service. A degree of mechanistic understanding of SCC will enable most metallic engineering materials to operate safely, though stress corrosion cracking failures still continue to occur unexpectedly in industry. In this paper, the characteristics, mechanisms and methods of SCC prevention are reviewed. The results of experimental studies on alpha brass are also reported of which the failure mode conformed with the film rupture and anodic dissolution mechanism.


Stress corrosion cracking Film rupture Dissolution Intergranular Transgranular failure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dix HH Jr (1940) Acceleration of the role of corrosion by high constant stresses. Trans AIME 137:11Google Scholar
  2. 2.
    Champion FA (1965) Corrosion testing procedures, 2ND edn. Wiley, New York, p 133Google Scholar
  3. 3.
    Sheinker AA, Wood JD (1972) Stress corrosion cracking of a high strength steel, Stress corrosion cracking of metals—a state of the art, ASTM STP 518 ASTM, p 16Google Scholar
  4. 4.
    Thompson DH (1972) Stress corrosion cracking of copper metals’, Stress corrosion cracking of metals—a state of the art, ASTM, STP 518. American Society for Testing and Materials, p 39Google Scholar
  5. 5.
    Harwood JJ (1956) The phenomena and mechanism of stress corrosion cracking”, Stress corrosion cracking and hydrogen embrittlement. In: Robertson WD (ed) John Wiley, p 1–6Google Scholar
  6. 6.
    Fontana MG, Greene ND. Corrosion engineering, 2nd edn. McGraw Hill Int. Ed., p 91Google Scholar
  7. 7.
    Romanov VV (1961) Stress-Corrosion cracking of metals. Jerusalem: Israel Program for Scientific Translations.Google Scholar
  8. 8.
    Scully JC (1966) The characteristics of transgranular stress-corrosion cracking. Br Corros J 1(9):355–359CrossRefGoogle Scholar
  9. 9.
    Parkins RN (1981) Environment sensitive fracture of metals, Metallic corrosion, Proc. 8th Int. Cong. On Metallic corr. (8th ICMC), Vol. III, p 2180–2200Google Scholar
  10. 10.
    Nguyen TH, Brown BF, Foley RT (1982) On the nature of the occluded cell in the stress corrosion cracking of AA 7075-T651—effect of potential, composition, morphology. Corrosion 38(6):319CrossRefGoogle Scholar
  11. 11.
    Le AH, Foley RT (1983) Stress corrosion cracking of AA 7075-T651 in various electrolytes—statistical treatment of data obtained using DCB precracked specimens. Corrosion 39(10):379–383. doi: 10.5006/1.3593875 CrossRefGoogle Scholar
  12. 12.
    Lyle FF (1983) Stress corrosion cracking characterization of 3.5 NiCrMoV low pressure turbine rotor steels in NaOH and NaCl solutions. Corrosion 39(4):120–131. doi: 10.5006/1.3580827 CrossRefGoogle Scholar
  13. 13.
    Bavarian B, Szklarska-Smialowska Z, MacDonald DD (1982) Effect of temperature on the stress corrosion cracking of tempered type 403 martensitic stainless steel in sodium sulfate solution. Corrosion 38(12):604–608. doi: 10.5006/1.3578210 CrossRefGoogle Scholar
  14. 14.
    Scully JC (1975) The fundamental of corrosion, 2nd edn. Pergamon Press, p 185Google Scholar
  15. 15.
    Felloni L, Cammarata GP, Palamobarini G, Poli G (1978) Influence of some metallurgical factors on the corrosion behaviour of two C–Mn steels in acidic solutions. Br Corros J 13(4):167CrossRefGoogle Scholar
  16. 16.
    Bobylev AV (1961) Stress corrosion cracking of metals—Israel Program for Scientific Translation, Jerusalem, p 72Google Scholar
  17. 17.
    Timonova MA (1961) Stress corrosion cracking of metals—Israel Program for Scientific Translation, Jerusalem, p 73Google Scholar
  18. 18.
    Pugh EN, Montague WG, Westwood ARC (1966) Corros Sci 6:345CrossRefGoogle Scholar
  19. 19.
    Liu R, Narita N, Attatetter C, Birnhaun H, Pugh EN (1980) Metall Trans 11A:1963Google Scholar
  20. 20.
    Edeleanu C (1959) In: Rhodin JN (ed) Physical metallurgy of stress corrosion fracture. Interscience Publishers, NYGoogle Scholar
  21. 21.
    Hines JG, Hoar TP (1956) J Iron Steel Inst 184(2):166Google Scholar
  22. 22.
    Hoar TP Hines JG (1961) Stress-Corrosion cracking of metals. Jerusalem: Israel Program for Scientific Translation p 107Google Scholar
  23. 23.
    Scully JC (1975) The fundamental of corrosion, 2nd edn. Pergamon Press, p 191Google Scholar
  24. 24.
    Kruger J 1980 in Stress corrosion cracking (eds) J Yahalom and A Aladjem (Israel: Freund Publishing House) p 9–16Google Scholar
  25. 25.
    Logan HL (1971) NACE Basic Corrosion Course. NACE publication, p 10–13Google Scholar
  26. 26.
    Uhlig H (1969) in Proc. Conf. fundamental aspects of stress corrosion cracking, NACE, Houston : Staehle RW, Forty AJ, Van Ruoyan D (eds)Google Scholar
  27. 27.
    Uhlig H (1973) Proc. Int. Conf. on SCC and Hydrogen Embrittlement of Iron Based Alloys. St. Etienne, NACE, HoustonGoogle Scholar
  28. 28.
    Parkins RN (1971) In: Scully JC (ed) The theory of stress corrosion cracking in alloys. NATO, Brussels, p 167Google Scholar
  29. 29.
    Staehle RW (1971) In: Scully JC (ed) The theory of stress corrosion cracking in alloys. NATO, Brussels, p 223Google Scholar
  30. 30.
    Keating FH (1948) Symposium on internal stresses in metals and alloys. Institute for Metals, London, p 311Google Scholar
  31. 31.
    Mears, R.B., Brown, R.H., Dix Jr., E.H. (1944). “A generalized theory of stress corrosion cracking”, Proc. Symposium on stress-corrosion cracking of metals, ASTM, Inst. mining engineers, 329–323.Google Scholar
  32. 32.
    Logan HL (1952) Film-rupture mechanism of stress corrosion. J Reg Nat Bur Stds 48:99CrossRefGoogle Scholar
  33. 33.
    Champion FA (1948) Int. Symp. on Stress in Metals and Alloys. Institute of Metals (London)Google Scholar
  34. 34.
    Ambrose JR, Kruger J (1974) Proc. 5th Int. Cong. On Metallic Corr, NACE, HoustonGoogle Scholar
  35. 35.
    Scully JC (1967) Kinetic features of stress-corrosion cracking. Corros Sci 7(4):197–207CrossRefGoogle Scholar
  36. 36.
    Parkins RB (1973) in Proc. Int. Conf. on SCC and Hydrogen embrittlement of iron based alloys. St. Etienne, NACE, HoustonGoogle Scholar
  37. 37.
    Hoar TP, Hines JG (1956) The stress corrosion cracking of austenitic. Stainless Steels J Iron Steel Inst 184:166Google Scholar
  38. 38.
    Wearmouth WR, Dean GP, Parkins RN (1973) Role of stress in the stress corrosion cracking of a Mg-Al alloy. Corrosion 29:251CrossRefGoogle Scholar
  39. 39.
    Vermilyea DA (1973) in Proc. Int. Conf. on SCC and hydrogen embrittlement of iron based Alloys. St. Etienne, NACE, HoustonGoogle Scholar
  40. 40.
    Oriani RA (1972) A mechanistic theory of hydrogen embrittlement of steels. Ber Bunnsem Gesell F Phys Chemie 76:848Google Scholar
  41. 41.
    Troiano AR (1960) The role of hydrogen and other interstitials in the mechanical behaviour of metals. Trans ASM 52:54Google Scholar
  42. 42.
    Whiteman MB, Troiano AR (1965) Hydrogen embrittlement of austenitic stainless steel. Corrosion 21(2):53–56. doi: 10.5006/0010-9312-21.2.53 CrossRefGoogle Scholar
  43. 43.
    Latanision RM, Staehle RW (1968) The effect of continuous hydrogenation on the deformation of nickel single crystals. Scripta Met 2:667–672CrossRefGoogle Scholar
  44. 44.
    Davis RA, Dreyer GH, Gallangher WC (1964) Stress corrosion cracking study of several high strength steels. Corrosion 20(3):935CrossRefGoogle Scholar
  45. 45.
    Johnson HH, Schneider EJ, Troiano AR (1958) Stress corrosion cracking and embrittlement. Trans AIME 212:526–536Google Scholar
  46. 46.
    Shively JH, Hehemann RF, Troiano AR (1966) Hydrogen permeability in a stable austenitic stainless steel. Corrosion 22(9):253–256. doi: 10.5006/0010-9312-22.9.253 CrossRefGoogle Scholar
  47. 47.
    Birley SS, Troman D (1971) Stress corrosion cracking of 304L austenitic steel and the martensite transformation. Corrosion 27(2):63–71. doi: 10.5006/0010-9312-27.2.63 CrossRefGoogle Scholar
  48. 48.
    Holzworth ML, Louthan MR Jr (1968) Hydrogen-induced phase transformations in type 304L stainless steels. Corrosion 24(4):110–124. doi: 10.5006/0010-9312-24.4.110 CrossRefGoogle Scholar
  49. 49.
    Vaughn DA, Phalen DI, Peterson CL, Boyd WK (1963) Relationship between hydrogen pickup and susceptible paths in stress corrosion cracking of type 304 stainless steel. Corrosion 19(9):315t–326t. doi: 10.5006/0010–9312-19.9.315 CrossRefGoogle Scholar
  50. 50.
    Berstein M, Pickering HW (1974) Carnegie-Melon University report 036-099-2Google Scholar
  51. 51.
    Wilde BE, Kim CD (1972) The role of hydrogen in the mechanism of stress corrosion cracking of austenitic stainless steels in hot chloride media. Corrosion 28(9):350–358. doi: 10.5006/0010–9312-28.9.350 CrossRefGoogle Scholar
  52. 52.
    Preece CM (1973) in “Proc. Int. Conf. on SCC and Hydrogen embrittlement of iron based alloys”, St. Etienne, NACE, HoustonGoogle Scholar
  53. 53.
    Radovici O, Popa MV (1981) The electrochemical study of stress corrosion cracking of some high strength carbon steels. Corrosion 37(8):443CrossRefGoogle Scholar
  54. 54.
    Bradhurst DH, Heuer PM (1981) Environmental cracking of high strength maraging steels: part I—aqueous NaCl solution. Corrosion 37(1):50–55. doi: 10.5006/1.3593837 CrossRefGoogle Scholar
  55. 55.
    Fontana MG, Greene ND (1987) Corrosion engineering, 2nd Edn. McGraw Hill Int. Ed., p 106Google Scholar
  56. 56.
    Loto CA (2012) Electrochemical noise measurement technique in corrosion research. Int J Electrochem Sci 7:9248–9270Google Scholar
  57. 57.
    Loto CA, Cottis RA (1987) Electrochemical noise generation during stress corrosion cracking of alpha-brass (70Cu-30Zn) alloy. Corrosion 43(8):499–504CrossRefGoogle Scholar
  58. 58.
    Loto CA, Cottis RA (1989) Electrochemical noise generation during SCC of high strength aluminium alloy–7075–T6. Corrosion 45(2):136–141CrossRefGoogle Scholar
  59. 59.
    Cottis RA, Loto CA (1989) Electrochemical noise generation during SCC of a high-strength carbon steel. Corrosion 46(1):12–19CrossRefGoogle Scholar
  60. 60.
    Loto CA, Cottis (1988) Electrochemical noise generation during corrosion of stainless steel-type 316 in acid chloride environment. Bull Electrochem 4(12):1001–1005Google Scholar
  61. 61.
    Loto CA (1984) Electrochemical aspects of stress corrosion cracking, Ph.D. thesis, UMIST, ManchesterGoogle Scholar
  62. 62.
    Loto CA. Electrochemical noise measurement and statistical parameters evaluation of stressed α-brass in Mattson’s solution. Alex Eng J. doi: 10.1016/ j. aej.2016.12.012
  63. 63.
    Forty AJ (1966) Teknisk-Ventenskaplig Forksning, 32, p. 104, 1961, extracted from H.E. Johnson, J. Leja, Surface chemical factors in the stress-corrosion cracking of alpha brass. Corrosion 22(6): 183Google Scholar
  64. 64.
    Robertson WD, Tetelman AS (1963) Strengthening mechanisms in solids. ASM International, Metals Park, p 217Google Scholar
  65. 65.
    Forty AJ, Humble P (1963) The influence of surface tarnish on stress-corrosion of a-brass. Phil Mag 8:247–264CrossRefGoogle Scholar
  66. 66.
    Newman RC, Shahrabi T, Sieradzki K (1989) Film-induced cleavage of alpha-brass. Scr Metall 23:71–74CrossRefGoogle Scholar
  67. 67.
    Newman RC, Sieradzki K (1983) Correlation of acoustic and electrochemical noise in the stress corrosion cracking of alpha brass. Scr Metall 17:621–624CrossRefGoogle Scholar
  68. 68.
    Du XS, Su WJ, Zang C, Li XJ, Qiao LJ, Chu WJ, Chen WC, Zhang QS, Liu DX (2013) Pre-strain enhances film rupture to promote SCC of brass in Mattsson’s solution—a proposal for a film rupture-induced SCC mechanism. Corros Sci 69:302–310CrossRefGoogle Scholar
  69. 69.
    Du XS, Su YJ, Li JX, Qiao LJ, Chu WY (2012) Inhibitive effects and mechanism of phosphates on the stress corrosion cracking of brass in ammonia solutions. Corros Sci 60:69–75CrossRefGoogle Scholar
  70. 70.
    Zhang C, Su YJ, Qiao LJ, Chu WY (2010) Study on the role of tarnishing film in stress corrosion cracking of brass in Mattsson’s solution. J Mater Res 25:991–998 2409–2415CrossRefGoogle Scholar
  71. 71.
    Zhang C, Su YJ, Qiao LJ, Chu WY (2009) Tarnishing film-induced brittle cracking of brass. J Mater Res 24(7):2409–2415. doi: 10.1557/jmr.2009.0289 CrossRefGoogle Scholar
  72. 72.
    Zhang C, Su YJ, Qiao L j, Chu W y (2009) Influence of hydrogen on the tarnishing film induced brittle cracking of brass. J Mater Res 24:3432–3438. doi: 10.1557/jmr.2009.0406 CrossRefGoogle Scholar
  73. 73.
    Yu Y, Parkins RN, Xu Y, Thompson G, Wood GC (1987) Stress corrosion crack initiation in a brass exposed to sodium nitrite solutions. Corros Sci 27(2):141–151 153-157CrossRefGoogle Scholar
  74. 74.
    Gad G, Yuan B, Wang C, Li L, Chen S (2014) The anodic dissolution process of copper in sodium fluoride solution. Int J Electrochem Sci 9:2565–2574Google Scholar
  75. 75.
    Galvele JR (1993) Surface mobility mechanism of stress corrosion cracking. Corros Sci 25(1–4):419–434CrossRefGoogle Scholar
  76. 76.
    Hall MM (2009) Film-rupture model for aqueous stress corrosion cracking under constant and variable stress. Corros Sci 51(2):225–233CrossRefGoogle Scholar
  77. 77.
    Allam NK, Nazeer AM, Ashour EA (2010) Effect of annealing on the stress corrosion cracking of α-brass in aqueous electrolytes containing aggressive ions. Ind Eng Chem Res 49(19):9529–9533. doi: 10.1021/ie 101603w CrossRefGoogle Scholar
  78. 78.
    Allam NK, Nazeer AM, Youssef GI, Ashour EA (2013) Electrochemical and stress corrosion cracking behavior of a-aluminium bronze and a-brass in nitrite solutions—a comparative study. Corrosion 69(1):7–84. doi: 10.5006/06 60 CrossRefGoogle Scholar
  79. 79.
    Serebrinsky SA, Galvele JR (2004) Effect of the strain rate on stress corrosion crack velocities in face-centred cubic alloys: a mechanistic interpretation. Corros Sci 46(3):591–612. doi: 10.1016/50010-938x(03)00172-0 CrossRefGoogle Scholar
  80. 80.
    Fernandez SA, Alvarez MG (2011) Passivity breakdown and stress corrosion cracking of a-brass in sodium nitrate solutions. Corros Sci 53(1):82–88CrossRefGoogle Scholar
  81. 81.
    Lee CK, Shih HC (1995) Determination of the critical potentials for pitting protection and stress corrosion cracking of 67–33 brass in fluoride solutions. J Electrochem Soc 142(3):731–737. doi: 10.1149/1.2048526 CrossRefGoogle Scholar
  82. 82.
    Turnbull A (1993) Modelling of environment assisted cracking. Corros Sci 34(6):921–960CrossRefGoogle Scholar
  83. 83.
    Carranza RM, Galvele JR (1988) Repassivation kinetics in stress corrosion cracking—II, α-brass in non-ammoniacal solutions. Corros Sci 28(9):851–865CrossRefGoogle Scholar
  84. 84.
    Bromoaniline— Retrieved: 20-06-2017
  85. 85.
    Pentylamine— Retrieved: 20-06-2017
  86. 86.
    Donnelly B, Downier TC, Grzeskowiak R, Hamburg HR, Short D (1978) The effect of electronic delocalization in organic groups R in substituted thiocarbamoyl R–CS–NH2 and related compounds on inhibition efficiency. Corros Sci 18:109CrossRefGoogle Scholar
  87. 87.
    Chetouani A, Hammouti B, Benhadda T, Daoudi M (2005) Inhibitive action of bipyrazolic type organic compounds towards corrosion of pure iron in acidic media. Appl Surf Sci 249:375CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd. 2017

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringCovenant UniversityOtaNigeria
  2. 2.Department of Chemical, Metallurgical and Materials EngineeringTUTPretoriaSouth Africa

Personalised recommendations