Advertisement

Uncertainty quantification and management in additive manufacturing: current status, needs, and opportunities

  • Zhen Hu
  • Sankaran MahadevanEmail author
ORIGINAL ARTICLE

Abstract

One of the major barriers that hinder the realization of significant potential of metal-based additive manufacturing (AM) techniques is the variation in the quality of the manufactured parts. Uncertainty quantification (UQ) and uncertainty management (UM) can resolve this challenge based on the modeling and simulation of the AM process. This paper reviews the research state of the art and discusses needs and opportunities in the UQ/UM of the AM processes, with a focus on laser powder bed fusion AM. The major methods and models of laser powder bed fusion AM process are summarized first. The current research work in UQ of AM processes is then reviewed. Based on the review of AM process models and current UQ approaches for the AM process, this paper presents insights into how the current state of the art UQ and UM techniques can be applied to AM to improve the product quality. Future research needs in UQ and UM of AM are also discussed. Laser sintering of metal nanoparticles, which is part of the micro-AM process, is used as an example to illustrate the application of UQ and UM in the AM.

Keywords

Additive manufacturing Uncertainty quantification Uncertainty management Metal Powder bed 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Standard A (2012) F2792. 2012. Standard terminology for additive manufacturing technologies, ASTM F2792-10e1Google Scholar
  2. 2.
    Huang Y, Leu MC, Mazumder J, Donmez A (2015) Additive manufacturing: current state, future potential, gaps and needs, and recommendations. J Manuf Sci Eng 137(1):014001CrossRefGoogle Scholar
  3. 3.
    Vaezi M, Seitz H, Yang S (2013) A review on 3D micro-additive manufacturing technologies. Int J Adv Manuf Technol 67(5–8):1721–1754CrossRefGoogle Scholar
  4. 4.
    Wohler T (2013) “Additive manufacturing and 3D printing—state of the industry annual worldwide progress report 2014, Wohler’s associates,” Inc., Fort Collins, COGoogle Scholar
  5. 5.
    Zhang X, Jiang X, Sun C (1999) Micro-stereolithography of polymeric and ceramic microstructures. Sensors Actuators A Phys 77(2):149–156CrossRefGoogle Scholar
  6. 6.
    Mireles J, Kim H-C, Lee IH, Espalin D, Medina F, MacDonald E, Wicker R (2013) Development of a fused deposition modeling system for low melting temperature metal alloys. J Electron Packag 135(1):011008CrossRefGoogle Scholar
  7. 7.
    Klosterman D, Chartoff R, Graves G, Osborne N, Priore B (1998) Interfacial characteristics of composites fabricated by laminated object manufacturing. Compos A: Appl Sci Manuf 29(9):1165–1174CrossRefGoogle Scholar
  8. 8.
    Lü L, Fuh JYH, Wong Y-S (2001) “Selective laser sintering,” Laser-Induced Materials and Processes for Rapid Prototyping, Springer, pp. 89–142Google Scholar
  9. 9.
    Kruth J-P, Froyen L, Van Vaerenbergh J, Mercelis P, Rombouts M, Lauwers B (2004) Selective laser melting of iron-based powder. J Mater Process Technol 149(1):616–622CrossRefGoogle Scholar
  10. 10.
    Dinda G, Dasgupta A, Mazumder J (2009) Laser aided direct metal deposition of Inconel 625 superalloy: microstructural evolution and thermal stability. Mater Sci Eng A 509(1):98–104CrossRefGoogle Scholar
  11. 11.
    Tang L, Ruan J, Landers RG, Liou F (2008) Variable powder flow rate control in laser metal deposition processes. J Manuf Sci Eng 130(4):041016CrossRefGoogle Scholar
  12. 12.
    Morgan R, Sutcliffe C, O'neill W (2004) Density analysis of direct metal laser re-melted 316L stainless steel cubic primitives. J Mater Sci 39(4):1195–1205CrossRefGoogle Scholar
  13. 13.
    Tapia G, Elwany A (2014) A review on process monitoring and control in metal-based additive manufacturing. J Manuf Sci Eng 136(6):060801CrossRefGoogle Scholar
  14. 14.
    Hu Z, Mahadevan S, Du X “Uncertainty quantification in time-dependent reliability analysis in the presence of parametric uncertainty,” ASCE-ASME J Risk Uncertain Eng Syst, B: Mech EngGoogle Scholar
  15. 15.
    Xiu D, Karniadakis GE (2002) The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J Sci Comput 24(2):619–644MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Bichon BJ, Eldred MS, Swiler LP, Mahadevan S, McFarland JM (2008) Efficient global reliability analysis for nonlinear implicit performance functions. AIAA J 46(10):2459–2468CrossRefGoogle Scholar
  17. 17.
    Kamath C, (2016) “Data mining and statistical inference in selective laser melting,” The International Journal of Advanced Manufacturing Technology, pp. 1-19.Google Scholar
  18. 18.
    Lopez F, Witherell P, Lane B (2016) Identifying uncertainty in laser powder bed fusion additive manufacturing models. Journal of Mechanical Design 138(11):114502CrossRefGoogle Scholar
  19. 19.
    Moser D, Beaman J, Fish S, Murthy J (2014) "Multi-layer computational modeling of selective laser sintering processes." ASME 2014 International Mechanical Engineering Congress and Exposition, Volume 2A: Advanced Manufacturing. Montreal, Quebec, Canada, November 14–20, Paper No. IMECE2014-37535, pp. V02AT02A008; 11 pagesGoogle Scholar
  20. 20.
    Turner JA, Babu SS, Blue C (2015) “Advanced Simulation for Additive Manufacturing: Meeting Challenges Through Collaboration (Workshop Report for U.S. DOE/EERE/AMO),”, Oak Ridge National Laboratory, ORNL Report TM-2015/324, Sep, 2015Google Scholar
  21. 21.
    Mellor S, Hao L, Zhang D (2014) Additive manufacturing: a framework for implementation. Int J Prod Econ 149:194–201CrossRefGoogle Scholar
  22. 22.
    Baumers M, Tuck C, Bourell D, Sreenivasan R, Hague R (2011) "Sustainability of additive manufacturing: measuring the energy consumption of the laser sintering process," Proceedings of the Institution of Mechanical Engineers. Part B: Journal of Engineering Manufacture 225(12):2228–2239Google Scholar
  23. 23.
    Paul R, Anand S (2012) Process energy analysis and optimization in selective laser sintering. J Manuf Syst 31(4):429–437CrossRefGoogle Scholar
  24. 24.
    Nelson JC, Xue S, Barlow JW, Beaman JJ, Marcus HL, Bourell DL (1993) Model of the selective laser sintering of bisphenol-A polycarbonate. Ind Eng Chem Res 32(10):2305–2317CrossRefGoogle Scholar
  25. 25.
    Zäh MF, Lutzmann S (2010) Modelling and simulation of electron beam melting. Prod Eng 4(1):15–23CrossRefGoogle Scholar
  26. 26.
    Rubenchik A, Wu S, Mitchell S, Golosker I, LeBlanc M, Peterson N (2015) Direct measurements of temperature-dependent laser absorptivity of metal powders. Appl Opt 54(24):7230–7233CrossRefGoogle Scholar
  27. 27.
    King W, Anderson A, Ferencz R, Hodge N, Kamath C, Khairallah S, Rubenchik A (2015) Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges. Appl Phys Rev 2(4):041304CrossRefGoogle Scholar
  28. 28.
    Markl M, Körner C (2016) Multi-scale modeling of powder-bed-based additive manufacturing. Annu Rev Mater Res 46:1–34CrossRefGoogle Scholar
  29. 29.
    Wang X, Kruth J (2000) “Energy absorption and penetration in selective laser sintering: a ray tracing model.”, In Proceedings of the International Conference on Mathematical Modeling and Computer Simulation of Metal Technologies, Ariel, Israel, November 13-15, MMT (pp. 673-682)Google Scholar
  30. 30.
    Boley C, Khairallah S, Rubenchik A (2015) Calculation of laser absorption by metal powders in additive manufacturing. Appl Opt 54(9):2477–2482CrossRefGoogle Scholar
  31. 31.
    Meakin P, Jullien R (1987) Restructuring effects in the rain model for random deposition. J Phys 48(10):1651–1662CrossRefGoogle Scholar
  32. 32.
    Mishra B, Rajamani RK (1992) The discrete element method for the simulation of ball mills. Appl Math Model 16(11):598–604CrossRefzbMATHGoogle Scholar
  33. 33.
    Kloss C, Goniva C (2011) LIGGGHTS—open source discrete element simulations of granular materials based on Lammps. Supplemental Proceedings: Materials Fabrication, Properties, Characterization, and Modeling 2:781–788CrossRefGoogle Scholar
  34. 34.
    Dou X, Mao Y, Zhang Y (2014) Effects of contact force model and size distribution on microsized granular packing. J Manuf Sci Eng 136(2):021003CrossRefGoogle Scholar
  35. 35.
    Xiang Z, Yin M, Deng Z, Mei X, Yin G (2016) Simulation of forming process of powder bed for additive manufacturing. J Manuf Sci Eng 138(8):081002CrossRefGoogle Scholar
  36. 36.
    Herbold, E., Walton, O., and Homel, M., 2015, “Simulation of powder layer deposition in additive manufacturing processes using the discrete element method,” Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States).Google Scholar
  37. 37.
    Parteli EJR. (2013) "DEM simulation of particles of complex shapes using the multisphere method: application for additive manufacturing." In AIP Conference Proceedings, vol. 1542, no. 1, pp. 185-188. AIP, doi: 10.1063/1.4811898Google Scholar
  38. 38.
    Alexander FJ, Chen S, Sterling J (1993) Lattice Boltzmann thermohydrodynamics. Phys Rev E 47(4):R2249CrossRefGoogle Scholar
  39. 39.
    Khairallah SA, Anderson A (2014) Mesoscopic simulation model of selective laser melting of stainless steel powder. J Mater Process Technol 214(11):2627–2636CrossRefGoogle Scholar
  40. 40.
    Devesse W, De Baere D, Guillaume P (2014) The isotherm migration method in spherical coordinates with a moving heat source. Int J Heat Mass Transf 75:726–735CrossRefGoogle Scholar
  41. 41.
    Jasak, H., Jemcov, A., and Tukovic, Z., “OpenFOAM: a C++ library for complex physics simulations,” Proc. International Workshop on Coupled Methods in Numerical Dynamics, IUC Dubrovnik, Croatia, pp. 1–20.Google Scholar
  42. 42.
    Klassen A, Scharowsky T, Körner C (2014) Evaporation model for beam based additive manufacturing using free surface lattice Boltzmann methods. J Phys D Appl Phys 47(27):275303CrossRefGoogle Scholar
  43. 43.
    Gürtler F-J, Karg M, Leitz K-H, Schmidt M (2013) Simulation of laser beam melting of steel powders using the three-dimensional volume of fluid method. Phys Procedia 41:881–886CrossRefGoogle Scholar
  44. 44.
    McClelland MA, Maienschein JL, Nichols AL, Wardell JF, Atwood AI, Curran PO (2002) “ALE3D Model Predictions and Materials Characterization for the Cookoff Response of PBXN-109”, (No. UCRL-JC-145756). Lawrence Livermore National Lab., CA (US)Google Scholar
  45. 45.
    Qi Y, Çağın T, Kimura Y, Goddard WA III (1999) Molecular-dynamics simulations of glass formation and crystallization in binary liquid metals: Cu-Ag and Cu-Ni. Phys Rev B 59(5):3527CrossRefGoogle Scholar
  46. 46.
    Rappaz M, Gandin C-A (1993) Probabilistic modelling of microstructure formation in solidification processes. Acta Metall Mater 41(2):345–360CrossRefGoogle Scholar
  47. 47.
    Zhang J, Liou F, Seufzer W, Taminger K (2016) A coupled finite element cellular automaton model to predict thermal history and grain morphology of Ti-6Al-4V during direct metal deposition (DMD). Additive Manufac 11:32–39CrossRefGoogle Scholar
  48. 48.
    Liou, F., Newkirk, J., Fan, Z., Sparks, T., Chen, X., Fletcher, K., Zhang, J., Zhang, Y., Kumar, K. S., and Karnati, S., 2015, Multiscale and multiphysics modeling of additive manufacturing of advanced materialsGoogle Scholar
  49. 49.
    Amine T, Newkirk JW, Liou F (2015) Methodology for studying effect of cooling rate during laser deposition on microstructure. J Mater Eng Perform 24(8):3129–3136CrossRefGoogle Scholar
  50. 50.
    Denlinger, E. R., Heigel, J. C., and Michaleris, P., 2014, Residual stress and distortion modeling of electron beam direct manufacturing Ti-6Al-4V. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, p. 0954405414539494.Google Scholar
  51. 51.
    Mercelis P, Kruth J-P (2006) Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp J 12(5):254–265CrossRefGoogle Scholar
  52. 52.
    Liu H (2014) “Numerical analysis of thermal stress and deformation in multi-layer laser metal deposition process.”, Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, master’s dissertation, Rolla, MissouriGoogle Scholar
  53. 53.
    Ding D, Pan Z, Cuiuri D, Li H (2015) Wire-feed additive manufacturing of metal components: technologies, developments and future interests. Int J Adv Manuf Technol 81(1–4):465–481CrossRefGoogle Scholar
  54. 54.
    Megahed M, Mindt H-W, N’Dri N, Duan H, Desmaison O (2016) Metal additive-manufacturing process and residual stress modeling. Integrat Mater Manuf Innov 5(1):1–33CrossRefGoogle Scholar
  55. 55.
    Paul R, Anand S (2015) A combined energy and error optimization method for metal powder based additive manufacturing processes. Rapid Prototyp J 21(3):301–312CrossRefGoogle Scholar
  56. 56.
    Xu X, Meteyer S, Perry N, Zhao YF (2015) Energy consumption model of binder-jetting additive manufacturing processes. Int J Prod Res 53(23):7005–7015CrossRefGoogle Scholar
  57. 57.
    Meteyer S, Xu X, Perry N, Zhao YF (2014) Energy and material flow analysis of binder-jetting additive manufacturing processes. Procedia CIRP 15:19–25CrossRefGoogle Scholar
  58. 58.
    Garg, A., Lam, J. S. L., and Savalani, M., 2015, “Energy component in the density of selective laser melting fabricated prototype,” The International Journal of Advanced Manufacturing Technology, pp. 1-9.Google Scholar
  59. 59.
    Paul R (2013) “Modeling and optimization of powder based additive manufacturing (AM) processes.”, Department of Mechanical Engineering, University of Cincinnati, Ph.D. DissertationGoogle Scholar
  60. 60.
    Sreenivasan R, Goel A, Bourell D (2010) Sustainability issues in laser-based additive manufacturing. Phys Procedia 5:81–90CrossRefGoogle Scholar
  61. 61.
    Körner C, Attar E, Heinl P (2011) Mesoscopic simulation of selective beam melting processes. J Mater Process Technol 211(6):978–987CrossRefGoogle Scholar
  62. 62.
    Mahale TR (2009) “Electron beam melting of advanced materials and structures.”, Department of Industrial Engineering, North Carolina State University, Ph.D. DissertationGoogle Scholar
  63. 63.
    Gusarov A, Kruth J-P (2005) Modelling of radiation transfer in metallic powders at laser treatment. Int J Heat Mass Transf 48(16):3423–3434CrossRefzbMATHGoogle Scholar
  64. 64.
    Gusarov A, Yadroitsev I, Bertrand P, Smurov I (2007) Heat transfer modelling and stability analysis of selective laser melting. Appl Surf Sci 254(4):975–979CrossRefGoogle Scholar
  65. 65.
    Wang X, Laoui T, Bonse J, Kruth J-P, Lauwers B, Froyen L (2002) Direct selective laser sintering of hard metal powders: experimental study and simulation. Int J Adv Manuf Technol 19(5):351–357CrossRefGoogle Scholar
  66. 66.
    Sisto A, Kamath C (2013)” Ensemble Feature Selection in Scientific Data Analysis”, Lawrence Livermore National Laboratory (LLNL), Livermore, CA, report number: No. LLNL-TR-644160Google Scholar
  67. 67.
    Tolochko NK, Khlopkov YV, Mozzharov SE, Ignatiev MB, Laoui T, Titov VI (2000) Absorptance of powder materials suitable for laser sintering. Rapid Prototyp J 6(3):155–161CrossRefGoogle Scholar
  68. 68.
    Shi Y, Zhang Y (2008) “Simulation of random packing of spherical particles with different size distributions.”, ASME 2006 International Mechanical Engineering Congress and Exposition, Heat Transfer, Volume 3, Chicago, Illinois, USA, November 5 – 10, Paper No. IMECE2006-15271, pp. 539-544; 6 pagesGoogle Scholar
  69. 69.
    Parteli EJ, Pöschel T (2016) Particle-based simulation of powder application in additive manufacturing. Powder Technol 288:96–102CrossRefGoogle Scholar
  70. 70.
    N'Dri, N., Mindt, H. W., Shula, B., Megahed, M., Peralta, A., Kantzos, P., and Neumann, J., 2015, “DMLS process modelling & validation,” TMS2015 Supplemental Proceedings, pp. 389-396.Google Scholar
  71. 71.
    Körner C, Pohl T, Rüde U, Thürey N, Zeiser T (2006) “Parallel lattice Boltzmann methods for CFD applications.”, In Numerical Solution of Partial Differential Equations on Parallel Computers, Lecture Notes in Computational Science and Engineering, vol 51. Springer, Berlin, Heidelberg, pp. 439-466Google Scholar
  72. 72.
    Ammer R, Markl M, Ljungblad U, Körner C, Rüde U (2014) Simulating fast electron beam melting with a parallel thermal free surface lattice Boltzmann method. Comput Math Appl 67(2):318–330MathSciNetCrossRefGoogle Scholar
  73. 73.
    Mindt H, Megahed M, Perlata A, Neumann J (2015) "DMLM models-numerical assessment of porosity," proceedings from the 22nd International Symposium on Air Breathing Engines, Phoenix, AZ, Oct, pp. 25-30Google Scholar
  74. 74.
    Jahanshahi M, Sanati M, Babaei Z (2008) Optimization of parameters for the fabrication of gelatin nanoparticles by the Taguchi robust design method. J Appl Stat 35(12):1345–1353MathSciNetCrossRefzbMATHGoogle Scholar
  75. 75.
    Boettinger WJ, Warren JA, Beckermann C, Karma A (2002) Phase-field simulation of solidification. Mater Res 32(1):163CrossRefGoogle Scholar
  76. 76.
    Beckermann C, Diepers H-J, Steinbach I, Karma A, Tong X (1999) Modeling melt convection in phase-field simulations of solidification. J Comput Phys 154(2):468–496CrossRefzbMATHGoogle Scholar
  77. 77.
    Dai K, Shaw L (2006) Parametric studies of multi-material laser densification. Mater Sci Eng A 430(1):221–229CrossRefGoogle Scholar
  78. 78.
    Zaeh MF, Branner G (2010) Investigations on residual stresses and deformations in selective laser melting. Prod Eng 4(1):35–45CrossRefGoogle Scholar
  79. 79.
    Cohen, D. L., 2010, “Additive manufacturing of functional constructs under process uncertainty,” Cornell UniversityGoogle Scholar
  80. 80.
    Delgado J, Ciurana J, Rodríguez CA (2012) Influence of process parameters on part quality and mechanical properties for DMLS and SLM with iron-based materials. Int J Adv Manuf Technol 60(5–8):601–610CrossRefGoogle Scholar
  81. 81.
    Raghunath N, Pandey PM (2007) Improving accuracy through shrinkage modelling by using Taguchi method in selective laser sintering. Int J Mach Tools Manuf 47(6):985–995CrossRefGoogle Scholar
  82. 82.
    Garg A, Tai K, Savalani M (2014) State-of-the-art in empirical modelling of rapid prototyping processes. Rapid Prototyp J 20(2):164–178CrossRefGoogle Scholar
  83. 83.
    Schaaf K (1999) "Uncertainty and sensitivity analysis of the heat transfer mechanisms in the lower head.", Proceedings of the OECD/CSNI Workshop on in-vessel core debris retention and coolability, Garching, 3rd-6th March, Paper No. NEA-CSNI-R--1998-18Google Scholar
  84. 84.
    Swiler, L. P., Eldred, M. S., and Adams, B. M., 2015, Dakota: bridging advanced scalable uncertainty quantification algorithms with production deploymentGoogle Scholar
  85. 85.
    Anderson A (2015) "Development of Physics-Based Numerical Models for Uncertainty Quantification of Selective Laser Melting Processes-2015 Annual Progress Report," Lawrence Livermore National Laboratory (LLNL), Livermore, CA, report number: LLNL-TR-678006Google Scholar
  86. 86.
    Adamczak S, Bochnia J, Kaczmarska B (2014) Estimating the uncertainty of tensile strength measurement for a photocured material produced by additive manufacturing. Metrol Measur Syst 21(3):553–560Google Scholar
  87. 87.
    Ma, L., Fong, J., Lane, B., Moylan, S., Filliben, J., Heckert, A., and Levine, L., “Using design of experiments in finite element modeling to identify critical variables for laser powder bed fusion,” Proc. International Solid Freeform Fabrication Symposium, Laboratory for Freeform Fabrication and the University of Texas Austin, TX, USAGoogle Scholar
  88. 88.
    Loughnane, G. T., 2015, “A framework for uncertainty quantification in microstructural characterization with application to additive manufacturing of Ti-6Al-4V,” Wright State UniversityGoogle Scholar
  89. 89.
    Park S-I, Rosen DW, Choi S-k, Duty CE (2014) Effective mechanical properties of lattice material fabricated by material extrusion additive manufacturing. Additive Manufac 1:12–23CrossRefGoogle Scholar
  90. 90.
    Cai G, Mahadevan S (2016)” Uncertainty Quantification of Manufacturing Process Effects on Macro-scale Material Properties”. International Journal for Multiscale Computational Engineering, 14(3), DOI: 10.1615/IntJMultCompEng.2016015552Google Scholar
  91. 91.
    Haldar A, Mahadevan S (2000) Probability, reliability, and statistical methods in engineering design. Wiley, New YorkGoogle Scholar
  92. 92.
    Sankararaman S, Ling Y, Mahadevan S (2011) Uncertainty quantification and model validation of fatigue crack growth prediction. Eng Fract Mech 78(7):1487–1504CrossRefGoogle Scholar
  93. 93.
    Devathi, H., Hu, Z., and Mahadevan, S., 2016, “Snap-through buckling reliability analysis under spatiotemporal variability and epistemic uncertainty,” AIAA J, pp 3981–3993.Google Scholar
  94. 94.
    Mahadevan S, Zhang R, Smith N (2001) Bayesian networks for system reliability reassessment. Struct Saf 23(3):231–251CrossRefGoogle Scholar
  95. 95.
    Zhang R, Mahadevan S (2000) Model uncertainty and Bayesian updating in reliability-based inspection. Struct Saf 22(2):145–160CrossRefGoogle Scholar
  96. 96.
    Du X (2008) Unified uncertainty analysis by the first order reliability method. Journal of Mechanical Design 130(9):091401CrossRefGoogle Scholar
  97. 97.
    Sankararaman S, Mahadevan S (2011) Likelihood-based representation of epistemic uncertainty due to sparse point data and/or interval data. Reliab Eng Syst Saf 96(7):814–824CrossRefGoogle Scholar
  98. 98.
    Hu Z, Du X (2015) A random field approach to reliability analysis with random and interval variables. ASCE-ASME J Risk Uncertain Eng Syst B: Mech Eng 1(4):041005CrossRefGoogle Scholar
  99. 99.
    Richardson LF (1911) “The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam,” Philosophical Transactions of the Royal Society of London. Ser A, Contain Papers Math Phys Char 210:307–357Google Scholar
  100. 100.
    Celik I, Karatekin O (1997) Numerical experiments on application of Richardson extrapolation with nonuniform grids. J Fluids Eng 119(3):584–590CrossRefGoogle Scholar
  101. 101.
    Kennedy MC, O'Hagan A (2001) Bayesian calibration of computer models. J Royal Stat Soc: Ser B (Stat Methodol) 63(3):425–464MathSciNetCrossRefzbMATHGoogle Scholar
  102. 102.
    Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of expensive black-box functions. J Glob Optim 13(4):455–492MathSciNetCrossRefzbMATHGoogle Scholar
  103. 103.
    Suykens JA, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293–300CrossRefzbMATHGoogle Scholar
  104. 104.
    Rasmussen CE, Williams CK (2006) Gaussian processes for machine learning (Vol. 1). Cambridge: MIT pressGoogle Scholar
  105. 105.
    Santner TJ, Williams BJ, Notz WI (2013) “The design and analysis of computer experiments.”, Springer Series in Statistics, Springer Science & Business Media New York, DOI  10.1007/978-1-4757-3799-8
  106. 106.
    Lophaven SN, Nielsen HB, Søndergaard J (2002) “DACE-A Matlab Kriging Toolbox, Version 2.0,” Technical University of Denmark, Technical. Report No. IMM-TR-2002-12Google Scholar
  107. 107.
    Ganapathysubramanian B, Zabaras N (2007) Sparse grid collocation schemes for stochastic natural convection problems. J Comput Phys 225(1):652–685MathSciNetCrossRefzbMATHGoogle Scholar
  108. 108.
    Hampton J, Doostan A (2015) Compressive sampling of polynomial chaos expansions: convergence analysis and sampling strategies. J Comput Phys 280:363–386MathSciNetCrossRefzbMATHGoogle Scholar
  109. 109.
    Hu Z, Mahadevan S (2016) Global sensitivity analysis-enhanced surrogate (GSAS) modeling for reliability analysis. Struct Multidiscip Optim 53(3):501–521MathSciNetCrossRefGoogle Scholar
  110. 110.
    Sankararaman S, Mahadevan S (2012) Likelihood-based approach to multidisciplinary analysis under uncertainty. J Mech Des 134(3):031008CrossRefGoogle Scholar
  111. 111.
    Committee, A. S., 1998, “AIAA guide for the verification and validation of computational fluid dynamics simulations (G-077-1998),” AIAAGoogle Scholar
  112. 112.
    Ling Y, Mahadevan S (2013) Quantitative model validation techniques: new insights. Reliab Eng Syst Saf 111:217–231CrossRefGoogle Scholar
  113. 113.
    Rebba R, Mahadevan S, Huang S (2006) Validation and error estimation of computational models. Reliab Eng Syst Saf 91(10):1390–1397CrossRefGoogle Scholar
  114. 114.
    Kleijnen JP (1995) Verification and validation of simulation models. Eur J Oper Res 82(1):145–162CrossRefzbMATHGoogle Scholar
  115. 115.
    Drignei D, Mourelatos ZP, Kokkolaras M, Pandey V (2014) Reallocation of testing resources in validating optimal designs using local domains. Struct Multidiscip Optim 50(5):825–838CrossRefGoogle Scholar
  116. 116.
    Ferson S, Oberkampf WL, Ginzburg L (2008) Model validation and predictive capability for the thermal challenge problem. Comput Methods Appl Mech Eng 197(29):2408–2430CrossRefzbMATHGoogle Scholar
  117. 117.
    Rebba R, Mahadevan S (2008) Computational methods for model reliability assessment. Reliab Eng Syst Saf 93(8):1197–1207CrossRefGoogle Scholar
  118. 118.
    Li C, Mahadevan S (2016) An efficient modularized sample-based method to estimate the first-order Sobol′ index. Reliab Eng Syst Saf 153:110–121CrossRefGoogle Scholar
  119. 119.
    Chen W, Jin R, Sudjianto A (2005) Analytical variance-based global sensitivity analysis in simulation-based design under uncertainty. J Mech Des 127(5):875–886CrossRefGoogle Scholar
  120. 120.
    Sudret B (2008) Global sensitivity analysis using polynomial chaos expansions. Reliab Eng Syst Saf 93(7):964–979CrossRefGoogle Scholar
  121. 121.
    Computers and Information in Engineering Conference. Volume 1A: 36th Computers and Information in Engineering Conference Charlotte, North Carolina, USA, August 21–24, Paper No. DETC2016-59671, pp. V01AT02A023; 10 pages doi:10.1115/DETC2016-59671Google Scholar
  122. 122.
    Hu Z, Ao D, Mahadevan S (2017) Calibration experimental design considering field response and model uncertainty. Computer Methods in Applied Mechanics and Engineering 318:92–119MathSciNetCrossRefGoogle Scholar
  123. 123.
    Ao D, Hu Z, Mahadevan S (2017) Design of validation experiments for life prediction models. Reliability Engineering & System Safety 165:22–33CrossRefGoogle Scholar
  124. 124.
    Nath P, Hu Z, Mahadevan S (2017) Sensor placement for calibration of spatially varying model parameters. Journal of Computational Physics 343:150–169MathSciNetCrossRefGoogle Scholar
  125. 125.
    Sankararaman S, McLemore K, Mahadevan S, Bradford SC, Peterson LD (2013) Test resource allocation in hierarchical systems using Bayesian networks. AIAA J 51(3):537–550CrossRefGoogle Scholar
  126. 126.
    Mullins J, Mahadevan S (2014) Variable-fidelity model selection for stochastic simulation. Reliab Eng Syst Saf 131:40–52CrossRefGoogle Scholar
  127. 127.
    Jiang X, Mahadevan S (2006) Bayesian cross-entropy methodology for optimal design of validation experiments. Meas Sci Technol 17(7):1895CrossRefGoogle Scholar
  128. 128.
    Sankararaman S, Mahadevan S (2015) Integration of model verification, validation, and calibration for uncertainty quantification in engineering systems. Reliab Eng Syst Saf 138:194–209CrossRefzbMATHGoogle Scholar
  129. 129.
    Du X, Chen W (2004) Sequential optimization and reliability assessment method for efficient probabilistic design. J Mech Des 126(2):225–233CrossRefGoogle Scholar
  130. 130.
    Zaman K, McDonald M, Mahadevan S, Green L (2011) Robustness-based design optimization under data uncertainty. Struct Multidiscip Optim 44(2):183–197CrossRefGoogle Scholar
  131. 131.
    Zaman, K., and Mahadevan, S., 2016, Reliability-based design optimization of multidisciplinary system under aleatory and epistemic uncertainty. Struct Multidiscip Optim, pp. 1-19Google Scholar
  132. 132.
    Rangavajhala S, Mahadevan S (2013) Design optimization for robustness in multiple performance functions. Struct Multidiscip Optim 47(4):523–538MathSciNetCrossRefzbMATHGoogle Scholar
  133. 133.
    Du X, Sudjianto A, Chen W (2004) An integrated framework for optimization under uncertainty using inverse reliability strategy. J Mech Des 126(4):562–570CrossRefGoogle Scholar
  134. 134.
    Plimpton, S., Crozier, P., and Thompson, A., 2007, “LAMMPS-large-scale atomic/molecular massively parallel simulator,” Sandia National Laboratories, 18Google Scholar
  135. 135.
    Mendelev M, Han S, Srolovitz D, Ackland G, Sun D, Asta M (2003) Development of new interatomic potentials appropriate for crystalline and liquid iron. Philos Mag 83(35):3977–3994CrossRefGoogle Scholar
  136. 136.
    Ackland G, Bacon D, Calder A, Harry T (1997) Computer simulation of point defect properties in dilute Fe–Cu alloy using a many-body interatomic potential. Philos Mag A 75(3):713–732CrossRefGoogle Scholar
  137. 137.
    Biersack J, Ziegler J (1982) Refined universal potentials in atomic collisions. Nucl Inst Methods Phys Res A 194(1):93–100CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd. 2017

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringVanderbilt UniversityNashvilleUSA
  2. 2.Department of Civil and Environmental Engineering, Department of Mechanical EngineeringVanderbilt UniversityNashvilleUSA

Personalised recommendations