Advertisement

Drop and tilt method of five-axis tool positioning for tensor product surfaces

  • Ravinder Kumar Duvedi
  • Sanjeev Bedi
  • Stephen Mann
ORIGINAL ARTICLE

Abstract

The drop and tilt tool positioning method for five-axis machining with a toroidal tool positions the toroidal tool to have two points of contact with a triangulated surface. In this paper, we extend the method to position the tool with two points of contact on algebraically defined tensor product Bézier surfaces.

Keywords

CNC machining Five-axis machining Multipoint machining 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bedi S, Gravelle S, Chen Y (1997) Principal curvature alignment technique for machining complex surfaces. J Manuf Sci Eng 119(4B):756–765CrossRefGoogle Scholar
  2. 2.
    Bedi S, Ismail F, Mahjoob MJ, Chen Y (1997) Toroidal versus ball nose and flat bottom end mills. Int J Adv Manuf 13(5):326–332CrossRefGoogle Scholar
  3. 3.
    Duvedi RK, Bedi S, Batish A, Mann S (2014) A multipoint method for 5-axis machining of triangulated surface models. Comput Aided Des 52:17–26CrossRefGoogle Scholar
  4. 4.
    Duvedi RK, Bedi S, Batish A, Mann S (2015) Numeric implementation of drop and tilt method of 5-axis tool positioning for machining of STL surfaces. Int J Adv Manuf Technol 78(9–12):1677–1690CrossRefGoogle Scholar
  5. 5.
    Duvedi RK, Bedi S, Batish A, Mann S (2016) The edge–torus tangency problem in multipoint machining of triangulated surface models. Int J Adv Manuf Technol 82(9):1959–1972CrossRefGoogle Scholar
  6. 6.
    Gray P, Ismail F, Bedi S (2005) Graphics-assisted rolling ball method for 5-axis surface machining. Comput-Aided Des 36(7):653–663CrossRefGoogle Scholar
  7. 7.
    He Y, Chen Z (2014) Optimising tool positioning for achieving multi-point contact based on symmetrical error distribution curve in sculptured surface machining. Int J Adv Manuf Technol 73(4):707–714CrossRefGoogle Scholar
  8. 8.
    Lasemi A, Xue D, Gu P (2010) Recent development in CNC machining of freeform surfaces: a state-of-the-art review. Comput-Aided Des 42:641–654CrossRefGoogle Scholar
  9. 9.
    Patel K, Bolanos GS, Bassi R, Bedi S (2011) Optimal tool shape selection based on surface geometry for three-axis CNC machining. Int J Adv Manuf Technol 57:655–670CrossRefGoogle Scholar
  10. 10.
    Rao N, Bedi S, Buchal R (1996) Implementation of the principal-axis method for machining of complex surfaces. Int J Adv Manuf Technol 11(4):249–257CrossRefGoogle Scholar
  11. 11.
    Rao N, Ismail F, Bedi S (1997) Tool path planning for five-axis machining using the principal axis method. Int J Mach Tools Manuf 37(7):1025–1040CrossRefGoogle Scholar
  12. 12.
    Roth D, Ismail F, Bedi S (2005) Mechanistic modelling of the milling process using complex tool geometry. Int J Adv Manuf Technol 25:140–144CrossRefGoogle Scholar
  13. 13.
    Warkentin A, Ismail F, Bedi S (2000) Comparison between multi-point and other 5-axis tool positioning strategies. Int J Mach Tools Manuf 40(2):185–208CrossRefGoogle Scholar
  14. 14.
    Warkentin A, Ismail F, Bedi S (2000) Multi-point tool positioning strategy for 5-axis machining of sculptured surfaces. Comput Aided Geom Des 17(1):83–100MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Yaua HT, Chuanga CM, Lee YS (2004) Numerical control machining of triangulated sculptured surfaces in a stereo lithography format with a generalized cutter. Int J Protein Res 42(13):2573–2598CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2017

Authors and Affiliations

  • Ravinder Kumar Duvedi
    • 1
  • Sanjeev Bedi
    • 2
  • Stephen Mann
    • 2
  1. 1.Thapar UniversityPatialaIndia
  2. 2.University of WaterlooWaterlooCanada

Personalised recommendations