Laser-assisted grinding of silicon nitride by picosecond laser

  • Bahman AzarhoushangEmail author
  • Babak Soltani
  • Ali Zahedi


Silicon nitride (Si3N4) is a high demanded structural ceramic with exceptional mechanical, thermal and chemical properties. Poor surface integrity and limited material removal rate due to high tool wear and cutting forces are the main problems of grinding this material. A novel laser-assisted grinding process is developed to overcome the current technological constraints in the grinding of Si3N4. Ultra-short pulsed laser radiations are efficiently applied to create ablation, controlled thermal damages and enhance the material removal rate in the grinding process. Two different laser structures have been produced on gas-pressure-sintered Si3N4 with various laser scan speeds and laser line spans. The high performance of the developed process is shown by experimental results. A substantial reduction in tangential and normal grinding forces and a slightly improved surface roughness have been achieved. The analysis of the surface integrity has shown a damage-free ground surface via laser assistance, where the pattern type of structures had a significant influence on the process results.


Laser-assisted grinding Silicon nitride Creep feed grinding Ultra-short pulsed laser 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Azarhoushang, Bahman (2011) Intermittent grinding of ceramic matrix composites. Unterbrochenes Schleifen von keramischen Faserverbundwerkstoffen. Aachen: Shaker (Forschungsberichte des Instituts für Fertigungstechnologie keramischer Bauteile (IFKB))Google Scholar
  2. 2.
    CeramTec GmbH: Advanced ceramics for mechanical engineering. Online verfügbar unter
  3. 3.
    Chang C-W, Kuo C-P (2007) An investigation of laser-assisted machining of Al2O3 ceramics planing. Int J Mach Tools Manuf 47(3–4):452–461. doi: 10.1016/j.ijmachtools.2006.06.010 CrossRefGoogle Scholar
  4. 4.
    Chang WL, Luo XC, Zhao QL, Sun JN, Zhao Y (2011) Laser assisted micro grinding of high strength materials. KEM 496:44–49. doi: 10.4028/ CrossRefGoogle Scholar
  5. 5.
    Dahotre NB, Harimkar SP (2008) Laser fabrication and machining of materials. Springer Science+Business Media, New YorkGoogle Scholar
  6. 6.
    Dold, Claus Alexander (2013) Picosecond laser processing of diamond cutting edges. Unter Mitarbeit von Reinhardt M. A. Poprawe und Konrad WegenerGoogle Scholar
  7. 7.
    Dubey AK, Yadava V (2008) Laser beam machining—a review. Int J Mach Tools Manuf 48(6):609–628. doi: 10.1016/j.ijmachtools.2007.10.017 CrossRefGoogle Scholar
  8. 8.
    Fortunato A, Guerrini G, Melkote SN, Bruzzone AAG (2015) A laser assisted hybrid process chain for high removal rate machining of sintered silicon nitride. CIRP Ann Manuf Technol 64(1):189–192. doi: 10.1016/j.cirp.2015.04.033 CrossRefGoogle Scholar
  9. 9.
    Haynes WM, Lide DR, Bruno TJ (2016) CRC handbook of chemistry and physics. A ready-reference book of chemical and physical data. 2016–2017, 97th edn. CRC Press, Boca RatonGoogle Scholar
  10. 10.
    Huang H, Yin L, Zhou L (2003) High speed grinding of silicon nitride with resin bond diamond wheels. J Mater Process Technol 141(3):329–336. doi: 10.1016/S0924-0136(03)00284-X CrossRefGoogle Scholar
  11. 11.
    Inasaki I (1987) Grinding of hard and brittle materials. CIRP Ann Manuf Technol 36(2):463–471. doi: 10.1016/S0007-8506(07)60748-3 CrossRefGoogle Scholar
  12. 12.
    Kumar M, Melkote S, Lahoti G (2011) Laser-assisted microgrinding of ceramics. CIRP Ann Manuf Technol 60(1):367–370. doi: 10.1016/j.cirp.2011.03.121 CrossRefGoogle Scholar
  13. 13.
    Lei S, Shin YC, Incropera FP (2001) Experimental investigation of thermo-mechanical characteristics in laser-assisted machining of silicon nitride ceramics. J Manuf Sci Eng 123(4):639. doi: 10.1115/1.1380382 CrossRefGoogle Scholar
  14. 14.
    Li W, Wang Y, Fan S, Xu J (2007) Wear of diamond grinding wheels and material removal rate of silicon nitrides under different machining conditions. Mater Lett 61(1):54–58. doi: 10.1016/j.matlet.2006.04.004 CrossRefGoogle Scholar
  15. 15.
    Liu W, Deng Z, Shang Y, Wan L (2017) Effects of grinding parameters on surface quality in silicon nitride grinding. Ceram Int 43(1):1571–1577. doi: 10.1016/j.ceramint.2016.10.135 CrossRefGoogle Scholar
  16. 16.
    Malkin S, Hwang TW (1996) Grinding mechanisms for ceramics. CIRP Ann Manuf Technol 45(2):569–580. doi: 10.1016/S0007-8506(07)60511-3 CrossRefGoogle Scholar
  17. 17.
    Marinescu ID (ed) (2007) Handbook of advanced ceramics machining. CRC Press, Boca RatonGoogle Scholar
  18. 18.
    Marinescu I, Webster J, Howes T (2007) Laser-assisted grinding of ceramics. In: Marinescu ID (ed) Handbook of advanced ceramics machining. CRC Press, Boca RatonGoogle Scholar
  19. 19.
    Przestacki D, Szymanski P, Wojciechowski S (2016) Formation of surface layer in metal matrix composite A359/20SiCP during laser assisted turning. Compos A: Appl Sci Manuf 91:370–379. doi: 10.1016/j.compositesa.2016.10.026 CrossRefGoogle Scholar
  20. 20.
    Rozzi JC, Pfefferkorn FE, Shin YC, Incropera FP (2000) Experimental evaluation of the laser assisted machining of silicon nitride ceramics. J Manuf Sci Eng 122(4):666. doi: 10.1115/1.1286556 CrossRefzbMATHGoogle Scholar
  21. 21.
    Samant AN, Dahotre NB (2009) Laser machining of structural ceramics—a review. J Eur Ceram Soc 29(6):969–993. doi: 10.1016/j.jeurceramsoc.2008.11.010 CrossRefGoogle Scholar
  22. 22.
    Seo D, Bae JS, Oh E, Kim S, Lim S (2014) Selective wet etching of Si3N4/SiO2 in phosphoric acid with the addition of fluoride and silicic compounds. Microelectron Eng 118:66–71. doi: 10.1016/j.mee.2013.12.027 CrossRefGoogle Scholar
  23. 23.
    Tawakoli T, Azarhoushang B (2011) Intermittent grinding of ceramic matrix composites (CMCs) utilizing a developed segmented wheel. Int J Mach Tools Manuf 51(2):112–119. doi: 10.1016/j.ijmachtools.2010.11.002 CrossRefGoogle Scholar
  24. 24.
    Tuersley IP, Jawaid A, Pashby IR (1994) Review. Various methods of machining advanced ceramic materials. J Mater Process Technol 42(4):377–390. doi: 10.1016/0924-0136(94)90144-9 CrossRefGoogle Scholar
  25. 25.
    Wang Y, Yang LJ, Wang NJ (2002) An investigation of laser-assisted machining of Al2O3 particle reinforced aluminum matrix composite. J Mater Process Technol 129(1–3):268–272. doi: 10.1016/S0924-0136(02)00616-7 CrossRefGoogle Scholar
  26. 26.
    Westkämper E (1995) Grinding assisted by Nd. YAG lasers. CIRP Ann Manuf Technol 44(1):317–320. doi: 10.1016/S0007-8506(07)62333-6 CrossRefGoogle Scholar
  27. 27.
    Xu S, Yao Z, Cai H, Wang H (2017) An experimental investigation of grinding force and energy in laser thermal shock-assisted grinding of zirconia ceramics. Int J Adv Manuf Technol 210(6):899. doi: 10.1007/s00170-017-0013-y Google Scholar
  28. 28.
    Zahedi A, Tawakoli T, Azarhoushang B, Akbari J (2015) Picosecond laser treatment of metal-bonded CBN and diamond superabrasive surfaces. Int J Adv Manuf Technol 76(5–8):1479–1491. doi: 10.1007/s00170-014-6383-5 CrossRefGoogle Scholar
  29. 29.
    Zhang XH, Chen GY, An WK, Deng ZH, Liu W, Yang C (2014) Experimental study of machining characteristics in laser induced wet grinding silicon nitride. Mater Manuf Process 29(11–12):1477–1482. doi: 10.1080/10426914.2014.930895 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2017

Authors and Affiliations

  1. 1.Institute for Precision Machining (KSF)Hochschule Furtwangen UniversityVillingen-SchwenningenGermany

Personalised recommendations