Effectiveness and acceptability of a virtual environment for assessing human–robot collaboration in manufacturing

  • Elias Matsas
  • George-Christopher Vosniakos
  • Dimitrios Batras


A highly immersive and interactive virtual environment was constructed as an experimentation platform for human–robot collaboration in constricting panels from preimpregnated carbon fibre fabrics. The application involves highly collaborative tasks such as handover, removal of adhesive backing strip and fabric layup in a mould. Furthermore, the user is expected to be most of the time within the robot’s workspace, jointly working as teammates on collaborative manufacturing tasks. The environment embeds two interaction metaphors for complex tasks and advocates use of cognitive aids to cultivate proactive behaviour of the user, thus promoting situation awareness, danger perception and enrichment of communication between human and robot. The application was put under test by a group of users. Their experience was registered scholarly through questionnaires and objective observation and is reported in the paper to explore the effectiveness and acceptability of such an environment. Overall, the application was judged positively, especially the use of cognitive aids which, under circumstances turned into alarms and readily provided mental association of collision danger to its cause. Furthermore, some deficiencies were identified pertaining to lack of hand-tracking performance and need to improve the layup metaphor.


Human–robot collaboration Virtual environment Cognitive aids Interaction metaphors Situation awareness Composites manufacturing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Krüger J, Lien TK, Verl A (2009) Cooperation of human and machines in assembly lines. CIRP Ann—Manuf Technol 58:628–646. doi: 10.1016/j.cirp.2009.09.009 CrossRefGoogle Scholar
  2. 2.
    Endsley MR (2011) Designing for situation awareness: an approach to user-centered design. CRC Press. 2nd edition, Boca Raton, ISBN 9781420063554Google Scholar
  3. 3.
    Ogrinc M, Likar N, Petri T, et al (2011) Control and collision avoidance for two Kuka LWR robots operated with the Kinect sensor. In: Proc. RAAD 2011 20th Int. Work. Robot. Alpe-Adria-Danube Reg. Brno, Czech Republic, pp 5–10Google Scholar
  4. 4.
    Fitzgerald C (2013). Developing baxter. In Proc. 2013 IEEE International Conference on Technologies for Practical Robot Applications (TePRA), IEEE, pp 1–6.Google Scholar
  5. 5.
    Lenz C, Knoll A (2014) Mechanisms and capabilities for human robot collaboration. In: 23rd IEEE Int. Symp. Robot Hum. Interact. Commun. IEEE, pp 666–671Google Scholar
  6. 6.
    Charalambous G, Fletcher SR, Webb P (2017) The development of a Human Factors Readiness Level tool for implementing industrial human-robot collaboration. Int J Adv Manuf Technol 1–11. doi:  10.1007/s00170-016-9876-6
  7. 7.
    Robotic Industries Association (2012) ANSI/RIA R15. 06: 2012 Safety Requirements for industrial robots and robot systems. Ann Arbor: Robotic Industries AssociationGoogle Scholar
  8. 8.
    ISO, ISO 10218-2: (2011): Robots and robotic devices–Safety requirements for industrial robots–Part 2: Robot systems and integration, Geneva, Switzerland: International Organization for Standardization 2011Google Scholar
  9. 9.
    ISO, ISO 10218-1: (2011) Robots and Robotic Devices-Safety Requirements for Industrial Robots-Part 1: Robots. (2011) International Organization for Standardization, Geneva, SwitzerlandGoogle Scholar
  10. 10.
    ISO, ISO/TS 15066:2016 (2016) Robots and robotic devices—collaborative robots, International Organization for Standardization, Geneva, SwitzerlandGoogle Scholar
  11. 11.
    De Santis A, Siciliano B (2008) Safety issues for human-robot cooperation in manufacturing systems. VRTest 2008, Tools Perspect. Virtual ManufGoogle Scholar
  12. 12.
    Ikuta K, Ishii H, Nokata M (2003) Safety evaluation method of design and control for human-care robots. Int J Robot Res 22:281–297. doi: 10.1177/0278364903022005001 CrossRefGoogle Scholar
  13. 13.
    Fang HC, Ong SK, Nee AYC (2014) A novel augmented reality-based interface for robot path planning. Int J Interact Des Manuf 8:33–42. doi: 10.1007/s12008-013-0191-2 CrossRefGoogle Scholar
  14. 14.
    Hugues O, Weistroffer V, Paljic A, et al (2015) Determining the important subjective criteria in the perception of human-like robot movements using virtual reality. Int J Humanoid Robot 1550033. doi:  10.1142/S0219843615500334
  15. 15.
    Kulić D, Croft E (2007) Pre-collision safety strategies for human-robot interaction. Auton Robots 22:149–164. doi: 10.1007/s10514-006-9009-4 CrossRefGoogle Scholar
  16. 16.
    Matsas E, Vosniakos G-C (2015) Design of a virtual reality training system for human–robot collaboration in manufacturing tasks. Int J Interact Des Manuf 1–15. doi:  10.1007/s12008-015-0259-2
  17. 17.
    Chellali M-E-A (2009) Etude des interactions homme-homme pour l’elaboration du referentiel commun dans les environnements virtuels collaboratifs. Universite de NantesGoogle Scholar
  18. 18.
    Nonaka S, Inoue K, Arai T, Mae Y (2004) Evaluation of human sense of security for coexisting robots using virtual reality. 1st report: evaluation of pick and place motion of humanoid robots. In: IEEE Int. Conf. Robot. Autom. 2004. Proceedings. ICRA ‘04. 2004. IEEE, pp 2770–2775 Vol.3Google Scholar
  19. 19.
    Takatalo J, Kawai T, Kaistinen J et al (2011) User experience in 3D stereoscopic games. Media Psychol 14:387–414. doi: 10.1080/15213269.2011.620538 CrossRefGoogle Scholar
  20. 20.
    Hoffman G, Breazeal C (2007) Effects of anticipatory action on human-robot teamwork efficiency, fluency, and perception of team. Proceeding ACM/IEEE Int Conf Human-robot Interact—HRI ‘07 1–8. doi:  10.1145/1228716.1228718
  21. 21.
    Lasota PA, Shah JA (2015) Analyzing the effects of human-aware motion planning on close-proximity human-robot collaboration. Hum Factors J Hum Factors Ergon Soc 57:21–33. doi: 10.1177/0018720814565188 CrossRefGoogle Scholar
  22. 22.
    Wickens CD (2008) Situation awareness: review of Mica Endsley’s 1995 articles on situation awareness theory and measurement. Hum Factors 50:397–403. doi: 10.1518/001872008X288420 CrossRefGoogle Scholar
  23. 23.
    Huber M, Radrich H, Wendt C, et al (2009) Evaluation of a novel biologically inspired trajectory generator in human-robot interaction. In: Proc.—IEEE Int. Work. Robot Hum. Interact. Commun. pp 639–644Google Scholar
  24. 24.
    Yamada Y, Hirasawa Y, Huang SY, Umetani Y (1996) Fail-safe human/robot contact in the safety space. In: Proc. 5th IEEE Int. Work. Robot Hum. Commun. RO-MAN’96 TSUKUBA. IEEE, pp 59–64Google Scholar
  25. 25.
    Ogorodnikova O (2010) Human robot interaction: the safety challenge (an integrated frame work for human safety ), PhD dissertation. Budapest University of Technology and Economics, Faculty of Mechanical EngineeringGoogle Scholar
  26. 26.
    Haddadin S, Albu-Schaffer A, Hirzinger G (2009) Requirements for safe robots: measurements, analysis and new insights. Int J Robot Res 28:1507–1527. doi: 10.1177/0278364909343970 CrossRefGoogle Scholar
  27. 27.
    Ragaglia M, Bascetta L, Rocco P, Zanchettin AM (2014) Towards safe human-robot interaction: evaluating in real-time the severity of possible collisions in industrial scenarios. In: 7th Int. Work. Human-Friendly Robot. (HFR 2014), Oct. 23–24, 2014, Pontedera. p 2174Google Scholar
  28. 28.
    Alami R, Gharbi M, Vadant B, et al (2014) On human-aware task and motion planning abilities for a teammate robot. Human-Robot Collab. Ind. Manuf. Work. RSS 2014Google Scholar
  29. 29.
    Mori M, MacDorman K, Kageki N (2012) The Uncanny Valley [from the field]. IEEE Robot Autom Mag 19:98–100. doi: 10.1109/MRA.2012.2192811 CrossRefGoogle Scholar
  30. 30.
    Strassmair C, Taylor NK, Aylett R (2014) Human robot collaboration in production environments. 23rd IEEE Int. Symp. Robot Hum. Interact. Commun. RO-MAN 2014Google Scholar
  31. 31.
    Vicentini F, Matthias B, Barattini P (2014) Industrial safety requirements for collaborative robots and applications. Eur. Robot. Forum—ERF 2014 Work. Saf. Ind. Robot. trends, Integr. Stand. 12–14 March 2014Google Scholar
  32. 32.
    Bartneck C, Kulić D, Croft E, Zoghbi S (2009) Measurement instruments for the anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety of robots. Int J Soc Robot 1:71–81. doi: 10.1007/s12369-008-0001-3 CrossRefGoogle Scholar
  33. 33.
    Duffy VG, Or CKL, Lau VWM (2006) Perception of safe robot speed in virtual and real industrial environments. Hum Factors Ergon Manuf 16:369–383CrossRefGoogle Scholar
  34. 34.
    Kulic D, Croft E (2007) Physiological and subjective responses to articulated robot motion. Robotica 25:13. doi: 10.1017/S0263574706002955 CrossRefGoogle Scholar
  35. 35.
    Kilteni K, Groten R, Slater M (2012) The sense of embodiment in virtual reality. Presence Teleoperators Virtual Environ 21:373–387. doi: 10.1162/PRES_a_00124 CrossRefGoogle Scholar
  36. 36.
    Booch G, Rumbaugh J, Jacobson I (2005) The unified modeling language user guide, 2nd edition. Addison-Wesley Professional ISBN: 0321267974Google Scholar
  37. 37.
    Bowman DA, Kruijff E, LaViola JJ, Poupyrev I (2004) 3D user interfaces: theory and practice. Addison Wesley Longman Publishing Co., Inc., Redwood CityGoogle Scholar
  38. 38.
    Matsas E, Vosniakos G, Batras D (2016) Modelling simple human-robot collaborative manufacturing tasks in interactive virtual environments. In: Proc. 2016 Virtual Real. Int. Conf.—VRIC ‘16. ACM Press, New York, New York, USA, pp 1–4Google Scholar
  39. 39.
    Yang U, Kim GJ (2002) Implementation and evaluation of “just follow me”: an immersive, VR-based, motion-training system. Presence Teleoperators Virtual Environ 11:304–323. doi: 10.1162/105474602317473240 CrossRefGoogle Scholar
  40. 40.
    Ouramdane N, Otmane S, Davesne F, Mallem M (2006) FOLLOW-ME: a new 3D interaction technique based on virtual guides and granularity of interaction. In: Proc. 2006 ACM Int. Conf. Virtual real. Contin. Its Appl.—VRCIA ‘06. ACM Press, New York, p 137Google Scholar
  41. 41.
    Matsas E (2015) Development and assessment of interactive virtual reality models for robotic manufacturing systems design, PhD dissertation, national technical university of athens, school of mechanical engineeringGoogle Scholar
  42. 42.
    Endsley MR (1995) Toward a theory of situation awareness in dynamic systems. Hum Factors J Hum Factors Ergon Soc 37:65–84. doi: 10.1518/001872095779049499 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2017

Authors and Affiliations

  • Elias Matsas
    • 1
  • George-Christopher Vosniakos
    • 1
  • Dimitrios Batras
    • 2
  1. 1.National Technical University of Athens, School of Mechanical EngineeringAthensGreece
  2. 2.University Paris 8, EA 4010—AIAC, INReVSaint-DenisFrance

Personalised recommendations