Influence of the hatching strategy on consolidation during selective electron beam melting of Ti-6Al-4V

  • T. Scharowsky
  • A. Bauereiß
  • C. Körner


Selective electron beam melting is a promising powder-based additive manufacturing process offering a multitude of parameters to influence the melting process. In the presented work, the energy input, given by the beam power, scan speed, and hatch spacing, is investigated regarding their influence on the heat distribution, chemical composition, and surface roughness. Experiments and numerical simulations with the lattice Boltzmann method were performed to achieve a profound understanding. Process maps dependent on beam power and scan speed for different hatch spacings were developed. The influence of process parameters on the chemical composition, surface roughness, and heat-affected zone was investigated. The experimental results are explained with the help of numerical simulations by the temperature profile during hatching.


Selective electron beam melting Ti-6Al-4V Hatching strategy Chemical composition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors want to thank the German Research Foundation (DFG) for funding the Collaborative Research Center 814 - Additive Manufacturing, sub-projects B2 and B4. The authors thankfully acknowledge Sabine Michel for the microprobe mappings and Maria Solim for sample preparation.


  1. 1.
    Baumers M, Tuck C, Wildman R, Ashcroft I, Hague R (2011) Energy inputs to additive manufacturing: does capacity utilization matter? In: 22nd annual international solid freeform fabrication symposium - an additive manufacturing conference, SFFGoogle Scholar
  2. 2.
    Heinl P, Rottmair A, Körner C, Singer R (2007) Cellular titanium by selective electron beam melting. Adv Eng Mater 9(5):360–364. doi: 10.1002/adem.200700025 CrossRefGoogle Scholar
  3. 3.
    Facchini L, Magalini E, Robotti P, Molinari A (2009) Microstructure and mechanical properties of ti-6al-4v produced by electron beam melting of pre-alloyed powders. Rapid Prototyp J 15(3):171–178. doi: 10.1108/13552540910960262 CrossRefGoogle Scholar
  4. 4.
    Murr L, Quinones S, Gaytan S, Lopez M, Rodela A, Martinez E, Hernandez D, Martinez E, Medina F, Wicker R (2009) Microstructure and mechanical behavior of ti-6al-4v produced by rapid-layer manufacturing, for biomedical applications. J Mech Behav Biomed Mater 2(1):20–32. doi:  10.1016/j.jmbbm.2008.05.004 CrossRefGoogle Scholar
  5. 5.
    Hrabe N, Quinn T (2013) Effects of processing on microstructure and mechanical properties of a titanium alloy (ti-6al-4v) fabricated using electron beam melting (ebm), part 2: energy input, orientation, and location. Mater Sci Eng A 573:271–277. doi: 10.1016/j.msea.2013.02.065 CrossRefGoogle Scholar
  6. 6.
    Al-Bermani S, Blackmore M, Zhang W, Todd I (2010) The origin of microstructural diversity, texture, and mechanical properties in electron beam melted ti-6al-4v. Metall Mater Trans A Phys Metall Mater Sci 41(13):3422–3434. doi: 10.1007/s11661-010-0397-x CrossRefGoogle Scholar
  7. 7.
    Juechter V, Scharowsky T, Singer R, Körner C (2014) Processing window and evaporation phenomena for ti–6al–4v produced by selective electron beam melting. Acta Mater 76(0):252–258. doi: 10.1016/j.actamat.2014.05.037 CrossRefGoogle Scholar
  8. 8.
    Guo WC, Lin F (2015) Effects of scanning parameters on material deposition during electron beam selective melting of ti-6al-4v powder. J Mater Process Technol 217(0):148–157. doi: 10.1016/j.jmatprotec.2014.11.010 CrossRefGoogle Scholar
  9. 9.
    Scharowsky T, Juechter V, Singer RF, Körner C (2015) Influence of the scanning strategy on the microstructure and mechanical properties in selective electron beam melting of ti–6al–4v. Adv Eng Mater. doi: 10.1002/adem.201400542
  10. 10.
    Hrabe N, Quinn T (2013) Effects of processing on microstructure and mechanical properties of a titanium alloy (ti-6al-4v) fabricated using electron beam melting (ebm), part 1: distance from build plate and part size. Mater Sci Eng A 573:264–270. doi: 10.1016/j.msea.2013.02.064 CrossRefGoogle Scholar
  11. 11.
    Ackelid U, Svensson M Additive manufacturing of dense metal parts by electron beam melting, materials science and technology conference and exhibition 2009, MS and t’09 4Google Scholar
  12. 12.
    DIN German Institute for Standardization Din 17851 - Titanium alloys; chemical composition (1990-11-00)Google Scholar
  13. 13.
    Thijs L, Verhaeghe F, Craeghs T, Humbeeck J, Kruth J-P (2010) A study of the microstructural evolution during selective laser melting of ti-6al-4v. Acta Mater 58(9):3303–3312. doi: 10.1016/j.actamat.2010.02.004 CrossRefGoogle Scholar
  14. 14.
    DIN German Institute for Standardization Din en iso 4287 - Geometrical product specifications (gps) - surface texture: profile method - terms, definitions and surface texture parameters (2010-07)Google Scholar
  15. 15.
    DIN German Institute for Standardization Din en iso 4288 - Geometrical product specifications (gps) - surface texture: profile method - rules and procedures for the assessment of surface texture (1998-04)Google Scholar
  16. 16.
    Attar E, Körner C (2009) Lattice boltzmann method for dynamic wetting problems. J Colloid Interface Sci 335(1):84–93. doi: 10.1016/j.jcis.2009.02.055 CrossRefGoogle Scholar
  17. 17.
    Attar E, Körner C (2011) Lattice boltzmann model for thermal free surface flows with liquid–solid phase transition. Int J Heat Fluid Flow 32(1):156–163. doi: 10.1016/j.ijheatfluidflow.2010.09.006 CrossRefGoogle Scholar
  18. 18.
    Körner C, Attar E, Heinl P (2011) Mesoscopic simulation of selective beam melting processes. J Mater Process Technol 211(6):978–987. doi: 10.1016/j.jmatprotec.2010.12.016 CrossRefGoogle Scholar
  19. 19.
    Markl M, Ammer R, Ljungblad U, Rüde U, Körner C (2013) Electron beam absorption algorithms for electron beam melting processes simulated by a three-dimensional thermal free surface lattice Boltzmann method in a distributed and parallel environment. In: 2013 international conference on computational science, vol 18, pp 2127–2136. doi: 10.1016/j.procs.2013.05.383
  20. 20.
    Bauereiß A, Scharowsky T, Körner C (2014) Defect generation and propagation mechanism during additive manufacturing by selective beam melting. J Mater Process Technol 214(11):2522–2528. doi: 10.1016/j.jmatprotec.2014.05.002 CrossRefGoogle Scholar
  21. 21.
    Ammer R, Markl M, Ljungblad U, Körner C, Rüde U (2014) Simulating fast electron beam melting with a parallel thermal free surface lattice Boltzmann method. In: Mesoscopic methods for engineering and science (proceedings of ICMMES-2012, Taipei, Taiwan, 23–27 July 2012), vol 67(2), pp 318–330. doi: 10.1016/j.camwa.2013.10.001
  22. 22.
    Klassen A, Bauereiß A, Körner C (2014) Modelling of electron beam absorption in complex geometries. J Phys D Appl Phys 47(6). doi: 10.1088/0022-3727/47/6/065307
  23. 23.
    Heinl P, Körner C, Singer R (2008) Selective electron beam melting of cellular titanium: mechanical properties. Adv Eng Mater 10(9):882–888. doi: 10.1002/adem.200800137 CrossRefGoogle Scholar
  24. 24.
    Cansizoglu O, Harrysson O, Cormier D, West H, Mahale T (2008) Properties of ti–6al–4v non-stochastic lattice structures fabricated via electron beam melting. Mater Sci Eng A 492(1–2):468–474. doi: 10.1016/j.msea.2008.04.002 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2017

Authors and Affiliations

  1. 1.Chair of Metals Science and TechnologyFriedrich-Alexander University Erlangen-NurembergErlangenGermany

Personalised recommendations