Material removal and chip formation mechanisms of UHC-steel during grinding

  • B. Denkena
  • T. Grove
  • T. Göttsching


The grinding process is still an important manufacturing process for the machining of automotive components. For power train components, ultra-high carbon steel (UHC-steel) is a promising new innovative alloy because of its low specific density. Results from turning of UHC-steel showed that the texture of UHC-steel significantly differs from conventional steels. Furthermore, extremely hard carbides, which are embedded into a soft ferrite matrix, result in a UHC-steel specific machining behavior and a high tool wear rate. Therefore, UHC-steel is marked as a difficult-to-cut material. So far, there are no research results available for the grinding of UHC-steel. Therefore, fundamental investigations were conducted in order to analyze the material removal and chip formation mechanisms. Scratching tests with a geometrically defined cubic boron nitride cutting edge showed ductile material removal mechanisms for a single grain chip thickness variation from h cu = 1.5 up to 14 μm. Analysis of the contact zone by means of an innovative quick stop device confirms these results.


Grinding UHC-steel Material removal mechanisms Chip formation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    (2015) United Nations: framework convention on climate change—adoption of the Paris agreement. Conference of the Parties, Twenty-first session, Paris, 30.11.2015–11.12.2015, FCCC/CP/2015/L9/Rev.1Google Scholar
  2. 2.
    (2012) Internationale Energieagentur: Anteil der Verkehrsträger an der weltweiten CO2-Emissionen aus der Verbrennung fossiler Brennstoffe im Jahr 2012. Statista GmbH,
  3. 3.
    Oyama T, Sherby OD et al (1984) Application of the divorced eutectoid transformation to the development of fine-grained, spheroidized structures in ultrahigh carbon steels. Scr Metall Mater 18(8):799–804CrossRefGoogle Scholar
  4. 4.
    Sherby OD, Young CM, Conrad M, Walser B, Eldon M (1976) Superplastic ultra high carbon steel. US Patent 3:951–697Google Scholar
  5. 5.
    Sherby OD, Kum DW et al (1988) UHCS Containing Aluminum. US Patent 4:769–214Google Scholar
  6. 6.
    Lesuer DR, Syn CK et al. (1993) The case for ultrahigh-carbon steels as structural materials. JOM 40–46Google Scholar
  7. 7.
    Taleff EM, Nagao M et al (1996) High-strain-rate superplasticity in ultrahigh-carbon steel containing 10 wt.% Al (UHCS-10Al). Scr Mater 34(12):1919–1923CrossRefGoogle Scholar
  8. 8.
    Denkena B, Koehler J, Dittrich MA (2014) Chip formation and tool wear in turning of aluminum-alloyed UHC-steels. Production Engineering Research and Development 8:415–421CrossRefGoogle Scholar
  9. 9.
    Wittenauer J, Schepp P, Walser B(1988) Application of superplastic UHC-steel for isothermal forging of machine components. TMS - Warrendale, PA, USA, 1.08.-4.08.1988, Blaine, WAGoogle Scholar
  10. 10.
    Pol F (2011) Massivumformung dichtereduzierter UHC-Stähle unter nicht superplastischen Bedingungen. dissertation. RWTH AachenGoogle Scholar
  11. 11.
    Denkena B, Grove T, Dittrich MA, Beiler C, Lahres M (2015) Effects of alloying elements in UHC-steels and consequences for the machinability. CIRP J Manuf Sci Technol 10:102–109CrossRefGoogle Scholar
  12. 12.
    Denkena B, Grove T, Dittrich M-A (2015) Flow stress and temperature considerations for orthogonal cutting of an aluminium-alloyed UHC-steel. Production Engineering Research and Development, Springer Verlag, 9(3): 337–342
  13. 13.
    Zeppenfeld C, Klocke F (2006) Speed stroke grinding of G-titanium aluminides. CIRP Ann Manuf Technol 55(1):333–338CrossRefGoogle Scholar
  14. 14.
    Hood R, Lechner F, Aspinwall DK, Voice W (2007) Creep feed grinding of gamma titanium aluminide and burn resistant titanium alloys using SiC abrasive. Int J Mach Tools Manuf 47(9):1486–1492CrossRefGoogle Scholar
  15. 15.
    Köhler J, Moral A, Denkena B (2013) Grinding of iron-aluminides. Procedia CIRP, Volume 9, 2nd CIRP Global Web Conference, pp. 2–7Google Scholar
  16. 16.
    Li P (1997) Untersuchung und Interpretation der beim Schleifen der Nickelbasislegierung IN 738 LC induzierten Gefügeänderungen in der Randzone. dissertation, TU BerlinGoogle Scholar
  17. 17.
    Österle W, Li PX (1997) Mechanical and thermal response of nickel-base superalloy upon grinding with high removal rates. Mater Sci Eng A238:357–366CrossRefGoogle Scholar
  18. 18.
    Shi Z, Elfizy A, St-Pierre B, Attia H (2011) Experimental study on grinding of a nickel-based alloy using vitrified CBN wheels. Adv Mater Res 325:134–139CrossRefGoogle Scholar
  19. 19.
    Göttsching T, Wippermann A, Grove T (2016) Quick stop device to analyze the chip formation mechanisms in face grinding, submitted by B. Denkena. Adv Mater Res 1140:221–227CrossRefGoogle Scholar
  20. 20.
    Lierse T (1998) Mechanische und thermische Wirkung beim Schleifen keramischer Werkstoffe. dissertation. University of HannoverGoogle Scholar
  21. 21.
    Kassen G (1969) Beschreibung der elementaren Kinematik des Schleifvorgangs, dissertation. RWTH AachenGoogle Scholar
  22. 22.
    Werner G (1985) Kinematik und Mechanik des Schleifprozesses. dissertation. RWTH AachenGoogle Scholar
  23. 23.
    Müller N (2002) Ermittlung des Einsatzverhaltens von Sol-Gel-Korund Schleifscheiben. dissertation. RWTH AachenGoogle Scholar
  24. 24.
    Malkin S, Hwang TW (2007) In: Marinescu ID (ed) Handbook of advanced ceramics machining—mechanisms for grinding of ceramics. CRC Press, Taylor & Francis Group, Boca RatonGoogle Scholar
  25. 25.
    Malkin S (1989) Grinding technology—theory and applications of machining with abrasives. Ellis Horwood Ltd., ChichesterGoogle Scholar
  26. 26.
    Denkena B, Tönshoff HK (2011) Spanen – Grundlagen. Springer Verlag, 3. AuflageGoogle Scholar
  27. 27.
    Martin K, Yegenoglu K (1992) HSG – Technologie, Handbuch zur praktischen Anwendung. Guehring Automation GmbH, FrohnstettenGoogle Scholar
  28. 28.
    Denkena B, Köhler J, Kästner J (2012) Chip formation in grinding: an experimental study. Production Engineering Research and Development (WGP) 6(2):107–115CrossRefGoogle Scholar
  29. 29.
    Denkena B, Grove T, Seiffert F (2015) Mikrogeometrische Eingriffsverhältnisse beim Längsumfangsplanschleifen. Diamond Business, 1/2015. Heft 52:62–72Google Scholar

Copyright information

© Springer-Verlag London 2017

Authors and Affiliations

  1. 1.Institute of Production Engineering and Machine ToolsLeibniz Universität HannoverGarbsenGermany

Personalised recommendations