The impact of defect morphology, defect size, and SDAS on the HCF response of A356-T6 alloy

  • A. Ben Ahmed
  • A. Nasr
  • A. Bahloul
  • R. Fathallah


This paper aims to investigate the influence of defect morphology, defect size, and SDAS on the fatigue behavior of A356-T6 aluminum alloy. A 3D finite element analysis for specimens containing different pore morphologies—(i) spherical pore, (ii) elliptical pore, and (iii) complex pore—was implemented. The Chaboche kinematic hardening model embedded in Abaqus is used to characterize the material response during cyclic loading. Kitagawa diagrams for defective A356-T6 are simulated using the defect stress gradient (DSG) approach. A good agreement is found between experimental and numerical results for predicting fatigue limit in the case of spherical defects. The impact of defect morphology on the fatigue resistance is clearly demonstrated. This paper shows that aluminum fatigue resistance is strongly dependent on the defect size, SDAS, and the defect morphology. Therefore, a mathematical model that takes into account the impact of these three parameters is developed using response surface (RS) approach to predict fatigue limit of porous aluminum alloy. Moreover, the effects of defect morphology, defect size, and SDAS on fatigue response and their interactions under fully reserved tensile loading are investigated.


Fatigue response A356-T6 alloy Kitagawa diagram Multiaxial fatigue behavior Defect morphology SDAS Defect size Response surface methodology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wang QG, Caceres CH, Griffiths JR (2003) Damage by eutectic particle cracking in aluminum casting alloys A356/A357. Metall Mater Trans A 34A:2901CrossRefGoogle Scholar
  2. 2.
    Jordon JB, Horstemeyer MF, Yang N, Major JF, Gall KA, Fan J, McDowell DL (2010) Microstructure inclusion influence on fatigue of a cast A356 aluminum alloy. Metall Mater Trans A 41A:356CrossRefGoogle Scholar
  3. 3.
    Wang QG, Praud M, Needleman A, Kim KS, Griffiths JR, Davidson CJ, Caceres CH, Benzarga AA (2010) Size effects in aluminum alloy castings. Acta Mater 58:3006–3013CrossRefGoogle Scholar
  4. 4.
    McDowell DL (2007) Simulation-based strategies for microstructure-sensitive fatigue modelling. Mater Sci Eng A 468-470:4–14CrossRefGoogle Scholar
  5. 5.
    Borbély A, Mughrabi H, Eisenmeier G, Hoppel HW (2002) A finite element modelling study of strain localization in the vicinity of near surface cavities as a cause of subsurface fatigue crack initiation. Int J Fract 115:227–232CrossRefGoogle Scholar
  6. 6.
    Ceschini L, Morri A, Morri A (2014) Estimation of local fatigue behaviour in A356-T6 gravity die cast engine head based on solidification defects content. Int J Cast Met Res 27:1CrossRefGoogle Scholar
  7. 7.
    Shaha SK, Czerwinski F, Kasprzak W, Friedman J, Chen DL (2015) Microstructure and mechanical properties of AL-Si cast alloy with additions of Zr-V-Ti. Mater Des 83:801–812CrossRefGoogle Scholar
  8. 8.
    Gonzales R, Gonzales A, Talamantes-Silva J, Valtierra S, Mercado-Solis RD, Garza Montes-de-Oca NF, Colas R (2013) Fatigue of an aluminium cast alloy used in the manufacture of automotive engine blocks. Int J Fatigue 54:118–126CrossRefGoogle Scholar
  9. 9.
    Ammar HR, Samuel AM, Samuel FH (2008a) Porosity and the fatigue behavior of hypoeutectic and hypereutectic aluminum-silicon casting alloys. Int J Fatigue 30:1024–1035CrossRefGoogle Scholar
  10. 10.
    Le V-D, Morel F, Bellett D, Saintier N, Osmond P (2016) Multiaxial high cycle fatigue damage mechanisms associated with the different microstructural heterogeneities of cast aluminum alloys. Mater Sci Eng A 649:426–440CrossRefGoogle Scholar
  11. 11.
    Ran G, Zhou J e (2007) Metallographic characterization of porosity in a cast aluminum alloy A356-T6. Mater Sci 546:989–994Google Scholar
  12. 12.
    Xu Z, Wen W, Zhai T (2012) Effects of pore position in depth on stress/strain concentration and fatigue crack initiation. Metall. Mater Trans A 43A:2763CrossRefGoogle Scholar
  13. 13.
    Davidson CJ, Griffiths JR, Badiali M, Zanada A (2000) Fatigue properties of a semi-solid cast AL-7Si-0.3Mg-T6 alloy. Metall Sci Technol 18:2Google Scholar
  14. 14.
    Ammar HR, Samuel AM, Samuel FH (2008b) Effect of casting imperfections on the fatigue life of 319-F and A356-T6 Al-Si casting alloys. Mater Sci Eng A 473:65–75CrossRefGoogle Scholar
  15. 15.
    Wang QG, Apelian D, Lados DA (2001a) Fatigue behavior of A356-T6 aluminium cast alloys. Part I. Effect of casting defects. J Light Metal 1:73–84CrossRefGoogle Scholar
  16. 16.
    Wang QG, Apelian D, Lados DA (2001b) Fatigue behavior of A356-T6 aluminium cast alloys. Part II. Effect of microstructural constituents. J Light Metal 1:85–97CrossRefGoogle Scholar
  17. 17.
    Li P, Lee PD, Maijer DM, Lindley TC (2009) Quantification of the interaction within defect populations on fatigue behavior in an aluminum alloy. Acta Mater 57:3539–3548CrossRefGoogle Scholar
  18. 18.
    Houriya MI, Nadot Y, Fathallah R, Roy M, Maijer DM (2015) Influence of casting defect and SDAS on the multiaxial fatigue behaviour of A356-T6 alloy including mean stress effect. Int J Fatigue 80:90–102CrossRefGoogle Scholar
  19. 19.
    Roy MJ, Yves N, Nadot-Martin C, Bardin P-G, Maijer DM (2011) Multiaxial Kitagawa analysis of A356-T6. Int J Fatigue 33:823–832CrossRefGoogle Scholar
  20. 20.
    Roy M, Yves N, Maijer DM, Benoit G (2012) Multiaxial fatigue behaviour of A356-T6. Fatigue Fract Eng Mater Struct 35:1148–1159CrossRefGoogle Scholar
  21. 21.
    Koutiri I, Bellett D, Morel F, Augustins L, Adrien J (2013) High cycle fatigue damage mechanisms in cast aluminum subject to complex loads. Int J Fatigue 47:44–57CrossRefGoogle Scholar
  22. 22.
    Mu P, Nadot Y, Nadot Martin C, Chabod A, Serrano-Munoz I, Verdu C (2014a) Influence of casting defects on the fatigue behavior of cast aluminum AS7G06-T6. Int J Fatigue 63:97–109CrossRefGoogle Scholar
  23. 23.
    Murakami Y (2002) Metal fatigue: effects of small defects and nonmetallic inclusions. Elsevier, AmsterdamGoogle Scholar
  24. 24.
    Mu P, Nadot Y, Serrano-Munoz I, Chabod A (2014b) Influence of complex defect on cast AS7G06-T6under multiaxial fatigue loading. Eng Fract Mech 123:148–162CrossRefGoogle Scholar
  25. 25.
    Rice JR (1988) Elastic fracture mechanics concept for interfacial cracks. J Appl Mech 55:99CrossRefGoogle Scholar
  26. 26.
    Susmel L, Taylor D (2008) The theory of critical distances to predict static strength of notched brittle components subjected to mixed-mode loading. Eng Fract Mech 75:534–550CrossRefGoogle Scholar
  27. 27.
    Nadot Y, Billaudeau T (2006) Multiaxial fatigue limit criterion for defective materials. Eng Fract Mech 73:112–133CrossRefGoogle Scholar
  28. 28.
    Vincent M, Nadot-Martin C, Nadot Y, Dragon A (2014) Fatigue from defect under multiaxial loading: defect stress gradient (DSG) approach using ellipsoidal equivalent inclusion method. Int J Fatigue 59:176–187CrossRefGoogle Scholar
  29. 29.
    Ben Ahmed A, Nasr A, Fathallah R (2016) Probabilistic high cycle fatigue behavior prediction of A356-T6 alloy considering the SDAS dispersion. Int J Adv Manuf Technol 0268-3768:1–14Google Scholar
  30. 30.
    Gadouini H, Nadot Y, Rebours C (2008) Influence of mean stress on the multiaxial fatigue behaviour of defective materials. Int J Fatigue 30:1623–1633CrossRefGoogle Scholar
  31. 31.
    I. Boromei, L. Ceschini, Al. Morri, An. Morri, G. Nicoletto, E. Riva (2010) Influence of the solidification microstructure and porosity on the fatigue strength of Al-Si-Mg casting alloys. 28–2Google Scholar
  32. 32.
    Bucher CG, Bourgund U (1990) A fast and efficient response surface approach for structural reliability problems. Struct Saf 7(1):57–66CrossRefGoogle Scholar
  33. 33.
    Rajashekhar MR, Ellingwood BR (1990) A now look at the response surface approach for reliability analysis. Struct Saf 12(3):205–220CrossRefGoogle Scholar
  34. 34.
    Myers RH, Mongomery DH (1995) Response surface methodology. Wiley, USAGoogle Scholar
  35. 35.
    Faravelli L (1989) Response-surface approach for reliability analysis. J Eng Mech 115(12):2763–2781CrossRefGoogle Scholar
  36. 36.
    Taxer T, Schwarz C, Smarsly W, Werner E (2013) A finite element approach to study the influence of cast pores on the mechanical properties of the Ni-Base alloy MAR-M247. Mater Sci Eng A 575:144–151CrossRefGoogle Scholar
  37. 37.
    Le Pen E, Baptiste D (2001) Prediction of the fatigue-damaged behaviour of Al/Al2 O3 composites by a micro-macro approach. Compos Sci Technol 61:2317–2326CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2017

Authors and Affiliations

  • A. Ben Ahmed
    • 1
  • A. Nasr
    • 2
  • A. Bahloul
    • 3
  • R. Fathallah
    • 1
  1. 1.Laboratoire de Mécanique, Matériaux et Procédés ( LMMP) , Ecole Nationale d’Ingènieurs de Sousse (ENISO)Université de SousseSousseTunisie
  2. 2.Laboratoire de Génie Mécanique (LGM), Institut préparatoire aux études d’ingénieurs de Monastir (IPEM)Université de MonastirMonastirTunisie
  3. 3.Laboratoire de Mécanique de Sousse (LMS), Ecole Nationale d’Ingènieurs de Sousse (ENISO)Université de SousseSousseTunisie

Personalised recommendations