Advertisement

An effective method for fabricating microchannels on the polycarbonate (PC) substrate with CO2 laser

  • Xueye Chen
  • Zengliang Hu
ORIGINAL ARTICLE

Abstract

This paper proposes an effective processing method for fabricating microchannels on the polycarbonate (PC) substrate with CO2 laser. The width of microchannel has close relationship with CO2 laser parameters including laser power, laser moving velocity, and length of microchannel. In order to optimize the width of the microchannel, the orthogonal experiment method is successfully applied in this experiment with L9(33) orthogonal test table. Then, the optimal machining parameters are obtained and a verified experiment is confirmed. Finally, the optimal microcahnnels on the PC can be obtained with the presented process parameters.

Keywords

CO2 laser Polycarbonate substrate Microchannel Orthogonal experiment method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    El-Taweel TA, Abdel-Maaboud AM, Azzam BS, Mohammad AE (2009) Parametric studies on the CO2 laser cutting of kevlar-49 composite. Int J Adv Manuf Technol 40(9–10):907–917CrossRefGoogle Scholar
  2. 2.
    Ghosal S, Chaki S (2010) Estimation and optimization of depth of penetration in hybrid CO2 LASER-MIG welding using ANN-optimization hybrid model. Int J Adv Manuf Technol 47(9–12):1149–1157CrossRefGoogle Scholar
  3. 3.
    Antończak AJ, Nowak M, Szustakiewicz K, Pigłowski J, Abramski KM (2013) The influence of organobentonite clay on CO2 laser grooving of nylon 6 composites. Int J Adv Manuf Technol 69(5–8):1389–1401CrossRefGoogle Scholar
  4. 4.
    Wang XC, Laoui T, Bonse J, Kruth JP, Lauwers B, Froyen L (2002) Direct selective laser sintering of hard metal powders: experimental study and simulation. Int J Adv Manuf Technol 19(5):351–357CrossRefGoogle Scholar
  5. 5.
    Teixidor D, Orozco F, Thepsonthi T, Ciurana J, Rodríguez CA, Özel T (2013) Effect of process parameters in nanosecond pulsed laser micromachining of PMMA-based microchannels at near-infrared and ultraviolet wavelengths. Int J Adv Manuf Technol 67(5–8):1651–1664CrossRefGoogle Scholar
  6. 6.
    Rahmani-Monfard, K., Fathi, A., & Rabiee, S. M. (2015). Three-dimensional laser drilling of polymethyl methacrylate (PMMA) scaffold used for bone regeneration. The International Journal of Advanced Manufacturing Technology, 1–9Google Scholar
  7. 7.
    Li HW, Fan YQ, Foulds IG (2012a) Rapid and low-cost fabrication of polystyrene-based molds for PDMS microfluidic devices using a CO2 laser. In advanced materials research. Trans Tech Publications 403:4344–4348Google Scholar
  8. 8.
    Davim JP, Oliveira C, Barricas N, Conceição M (2008) Evaluation of cutting quality of PMMA using CO2 lasers. Int J Adv Manuf Technol 35(9–10):875–879CrossRefGoogle Scholar
  9. 9.
    Eltawahni, H. A., Olabi, A. G., & Benyounis, K. Y. (2011, January). Assessment and optimization of CO2 laser cutting process of PMMA. In International Conference on Advances in Materials and Processing Technologies (AMPT2010). AIP Publishing 1315(1)1553–1558Google Scholar
  10. 10.
    Sun Y, Satyanarayan MVD, Nguyen NT, Kwok YC (2008) Continuous flow polymerase chain reaction using a hybrid PMMA-PC microchip with improved heat tolerance. Sensors Actuators B Chem 130(2):836–841CrossRefGoogle Scholar
  11. 11.
    Riahi M (2012) Fabrication of a passive 3D mixer using CO2 laser ablation of PMMA and PDMS moldings. Microchem J 100:14–20CrossRefGoogle Scholar
  12. 12.
    Toossi A, Daneshmand M, Sameoto D (2013) A low-cost rapid prototyping method for metal electrode fabrication using a CO2 laser cutter. J Micromech Microeng 23(4):047001CrossRefGoogle Scholar
  13. 13.
    Chen X, Li T, Shen J, Hu Z (2016a) Fractal design of microfluidics and nanofluidics—a review. Chemom Intell Lab Syst 155:19–25CrossRefGoogle Scholar
  14. 14.
    Chung CK, Syu YJ, Wang HY, Cheng CC, Lin SL, Tu KZ (2013) Fabrication of flexible light guide plate using CO2 laser LIGA-like technology. Microsyst Technol 19(3):439–443CrossRefGoogle Scholar
  15. 15.
    Li H, Fan Y, Kodzius R, Foulds IG (2012b) Fabrication of polystyrene microfluidic devices using a pulsed CO2 laser system. Microsyst Technol 18(3):373–379CrossRefGoogle Scholar
  16. 16.
    Prakash S, Kumar S (2015) Profile and depth prediction in single-pass and two-pass CO2 laser microchanneling processes. J Micromech Microeng 25(3):035010MathSciNetCrossRefGoogle Scholar
  17. 17.
    Yang CB, Deng CS, Chiang HL (2012) Combining the Taguchi method with artificial neural network to construct a prediction model of a CO2 laser cutting experiment. Int J Adv Manuf Technol 59(9–12):1103–1111CrossRefGoogle Scholar
  18. 18.
    Chen, X. Y., Gao, Q., Wang, X. L., & Li, X. D. (2016b). Experimental design and parameter optimization for laser three-dimensional (3-D) printing. Lasers in Engineering (Old City Publishing) 33Google Scholar
  19. 19.
    Chen X, Li T, Shen J (2016c) CO2 laser ablation of microchannel on PMMA substrate for effective fabrication of microfluidic chips. Int Polym Process 31(2):233–238CrossRefGoogle Scholar
  20. 20.
    Chen X, Shen J, Zhou M (2016d) Rapid fabrication of a four-layer PMMA-based microfluidic chip using CO2-laser micromachining and thermal bonding. J Micromech Microeng 26(10):107001CrossRefGoogle Scholar
  21. 21.
    Chen, X., Li, T., & Fu, B. (2016e). Surface roughness study on microchannels of CO2 laser fabricating PMMA-based microfluidic chip. Surface Review and Letters 1750017Google Scholar
  22. 22.
    Chen X, Li T, Shen J, Hu J (2016f) Optimization of processing micro-channels with CO2-laser on polyethylene terephthalate (PET) sheet. Opt Precis Eng 24(10):224–228Google Scholar
  23. 23.
    Qi H, Chen T, Yao L, Zuo T (2009) Micromachining of microchannel on the polycarbonate substrate with CO 2 laser direct-writing ablation. Opt Lasers Eng 47(5):594–598CrossRefGoogle Scholar
  24. 24.
    Li H, Wang L, Cai Q (1991) Simplified calculation of temperature field in laser heating [J]. The Laser Technology 2:022Google Scholar
  25. 25.
    Chen, X., Li, T., Hu, Z., & Zhou, M. (2016g). Using orthogonal experimental method optimizing surface quality of CO2 laser cutting process for PMMA microchannels. Int J Adv Manuf Technol 1–7Google Scholar

Copyright information

© Springer-Verlag London 2017

Authors and Affiliations

  1. 1.Faulty of Mechanical Engineer and AutomationLiaoning University of TechnologyJinzhouChina

Personalised recommendations