Advertisement

Agent-based middleware architecture for reconfigurable manufacturing systems

  • Rafael Priego
  • Nagore Iriondo
  • Unai Gangoiti
  • Marga Marcos
Open Access
ORIGINAL ARTICLE

Abstract

Modern manufacturing systems are expected to be flexible and efficient in order to cope with challenging market demands. Thus, they must be flexible enough as to meet changing requirements such as changes in production, energy efficiency, performance optimization, fault tolerance to process or controller faults, among others. Demanding requirements can be defined as a set of quality of service (QoS) requirements to be met. This paper proposes a generic and customizable multi-agent architecture that, making use of distributed agents, monitors QoS, triggering, if needed, a reconfiguration of the control system to recover QoS. As a proof of concept, the architecture has been implemented to provide availability of the control system understood as service continuity. The prototype has been tested in a case study consisting of an assembly cell where assessment of the approach has been conducted.

Keywords

Multi-agent systems Middleware Quality of service Control system availability Dynamic reconfiguration 

References

  1. 1.
    Innovation ERC (2013) Factories of the Future PPP: towards competitive EU manufacturing. European Union Publishing. http://ec.europa.eu/research/press/2013/pdf/ppp/fof_factsheet.pdf. Accessed 28 Sept 2016
  2. 2.
    Blanchet M, Rinn T, Von Thaden G, Thieulloy G (2014) Industry 4.0 The new industrial revolution How Europe will succeed. Roland Berger Publishing. https://www.rolandberger.com/publications/publication_pdf/roland_berger_tab_industry_4_0_20140403.pdf. Accessed 29 Sept 2016
  3. 3.
    Council NST (2016) Advanced manufacturing : a snapshot of priority technology areas across the federal government subcommittee for advanced manufacturing. White House Publishing. https://www.whitehouse.gov/sites/whitehouse.gov/files/images/Blog/NSTC%20SAM%20technology%20areas%20snapshot.pdf. Accessed 29 Sept 2016
  4. 4.
    Morenas J, Higuera AG, Alonso PG (2012) Product driven distributed control system for an experimental logistics centre. International Journal of Innovative Computing, Informatics and Control 8:7199–7216Google Scholar
  5. 5.
    Nouri H (2015) Development of a comprehensive model and BFO algorithm for a dynamic cellular manufacturing system. Appl Math Model 40:1514–1531. doi: 10.1016/j.apm.2015.09.004 MathSciNetCrossRefGoogle Scholar
  6. 6.
    Pach C, Berger T, Sallez Y, Trentesaux D (2015) Reactive control of overall power consumption in flexible manufacturing systems scheduling: a potential fields model. Control Eng Pract 44:193–208. doi: 10.1016/j.conengprac.2015.08.003 CrossRefGoogle Scholar
  7. 7.
    Lepuschitz W, Zoitl A, Vallée M, Merdan M (2011) Toward self-reconfiguration of manufacturing systems using automation agents. IEEE Transactions on Systems, Man, and Cybernetics, Part C 41:52–69. doi: 10.1109/TSMCC.2010.2059012 CrossRefGoogle Scholar
  8. 8.
    Legat C, Vogel-heuser B (2014) A multi-agent architecture for compensating unforeseen failures on field control level. Service Orientation in Holonic and Multi-Agent Manufacturing and Robotics 544:195–208. doi: 10.1007/978-3-319-04735-5 CrossRefGoogle Scholar
  9. 9.
    Botygin IA, Tartakovsky VA (2014) The development and simulation research of load balancing algorithm in network infrastructures. In: Proceedings of the International Conference on Mechanical Engineering, Automation and Control Systems (MEACS), Tomsk. doi: 10.1109/MEACS.2014.6986904
  10. 10.
    Binotto APD, Wehrmeister MA, Kuijper A, Pereira CE (2013) Sm@rtConfig: a context-aware runtime and tuning system using an aspect-oriented approach for data intensive engineering applications. Control Eng Pract 21:204–217. doi: 10.1016/j.conengprac.2012.10.001 CrossRefGoogle Scholar
  11. 11.
    Guo L, Wang B, Wang W (2009) Research of energy-efficiency algorithm based on on-demand load balancing for wireless sensor networks. Proceedings of the International Symposium on Test and Measurement 2:22–26. doi: 10.1109/ICTM.2009.5413071 Google Scholar
  12. 12.
    Merz M, Frank T, Vogel-Heuser B (2012) Dynamic redeployment of control software in distributed industrial automation systems during runtime. In: Proceedings of the IEEE International Conference on Automation Science and Engineering (CASE), Seoul, pp 863–868. doi: 10.1109/CoASE.2012.6386445
  13. 13.
    Streit A, Rösch S, Vogel-Heuser B (2014) Redeployment of control software during runtime for modular automation systems taking real-time and distributed I/O into consideration. In: Proceedings of the IEEE 19th Conference on Emerging Technologies Factory Automation (ETFA). Barcelona. doi: 10.1109/ETFA.2014.7005263
  14. 14.
    Priego R, Armentia A, Orive D, Marcos M (2013) Supervision-based reconfiguration of industrial control systems. In: Proceedings of the IEEE 18th Conference on Emerging Technologies & Factory Automation (ETFA). Cagliari. doi: 10.1109/ETFA.2013.6648130
  15. 15.
    Priego R, Agirre A, Estévez E, Orive D, Marcos M (2015) Middleware-based support for reconfigurable mechatronic systems, 2nd conference on embedded systems. Computational Intelligence and Telematics in Control (CESCIT) 48:81–86. doi: 10.1016/j.ifacol.2015.08.112 Google Scholar
  16. 16.
    Priego R, Armentia A, Estevez E, Marcos M (2015) On applying MDE for generating reconfigurable automation systems. In: Proceedings of the 13th IEEE International Conference on Industrial Informatics (INDIN). Cambridge, pp 1233–1238. doi: 10.1109/INDIN.2015.7281911
  17. 17.
    Commission IE (2004) International Standard IEC 61499 Part 1. IEC Publishing. https://webstore.iec.ch/p-preview/info_iec61499-1%7Bed1.0%7Den.pdf. Accessed 28 Sept 2016
  18. 18.
    Commission IE (2013) International Standard IEC 61131-3, Programmable Logic Controllers Part 3. IEC Publishing. https://webstore.iec.ch/publication/4552. Accessed 28 Sept 2016
  19. 19.
    Olsen S, Wang J, Ramirez-Serrano A, Brennan RW (2005) Contingencies-based reconfiguration of distributed factory automation. Robot Comput Integr Manuf 21:379–390. doi: 10.1016/j.rcim.2004.11.011 CrossRefGoogle Scholar
  20. 20.
    Khalgui M, Mosbahi O (2010) Intelligent distributed control systems. Inf Softw Technol 52:1259–1271. doi: 10.1016/j.infsof.2010.06.001 CrossRefGoogle Scholar
  21. 21.
    Schimmel A, Zoitl A (2011) Distributed online change for IEC 61499. In: Proceedings of the IEEE 16th Conference on Emerging Technologies & Factory Automation (ETFA). Toulouse. doi: 10.1109/ETFA.2011.6059117
  22. 22.
    Yan J, Vyatkin V (2013) Extension of reconfigurability provisions in IEC 61499. In: Proceedings of the IEEE 18th Conference on Emerging Technologies & Factory Automation (ETFA). Cagliari. doi: 10.1109/ETFA.2013.6648026
  23. 23.
    Strasser T, Froschauer R (2012) Autonomous application recovery in distributed intelligent automation and control systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C 42:1054–1070. doi: 10.1109/TSMCC.2012.2185928 CrossRefGoogle Scholar
  24. 24.
    Wehrmeister MA, de Freitas EP, Binotto APD, Pereira CE (2014) Combining aspects and object-orientation in model-driven engineering for distributed industrial mechatronics systems. Mechatronics 24:844–865. doi: 10.1016/j.mechatronics.2013.12.008 CrossRefGoogle Scholar
  25. 25.
    Armentia A, Gangoiti U, Priego R, Estévez E, Marcos M (2015) Flexibility support for homecare applications based on models and multi-agent technology. Sensors 15:31939–31964. doi: 10.3390/s151229899 CrossRefGoogle Scholar
  26. 26.
    Thramboulidis K (2005) Model integrated mechatronics—towards a new paradigm in the development of manufacturing systems. IEEE Transactions on Industrial Informatics 1:54–61CrossRefGoogle Scholar
  27. 27.
    Lüder A, Estévez E, Hundt L, Marcos M (2010) Automatic transformation of logic models within engineering of embedded mechatronical units. Int J Adv Manuf Technol 54:1077–1089. doi: 10.1007/s00170-010-3010-y CrossRefGoogle Scholar
  28. 28.
    Bellifemine F, Poggi A, Rimassa G (2001) Developing multi-agent systems with a FIPA-compliant agent framework. Software - Practice and Experience 31:103–128CrossRefzbMATHGoogle Scholar
  29. 29.
    Bellifemine F, Caire G, Poggi A, Rimassa G (2008) JADE: a software framework for developing multi-agent applications. Lessons learned Information and Software Technology 50:10–21. doi: 10.1016/j.infsof.2007.10.008 CrossRefGoogle Scholar
  30. 30.
    FIPA (2015) Standard FIPA Specifications. FIPA Publishing. http://www.fipa.org/repository/standardspecs.html. Accessed 7 Sept 2015

Copyright information

© The Author(s) 2017

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Rafael Priego
    • 1
  • Nagore Iriondo
    • 1
  • Unai Gangoiti
    • 1
  • Marga Marcos
    • 1
  1. 1.Department of Automatic Control and System EngineeringUniversity of the Basque CountryBilbaoSpain

Personalised recommendations