Using Barkhausen noise to measure coating depth of coated high-speed steel

  • N. Seemuang
  • T. SlatterEmail author
Open Access


Coated high-speed steel tools are widely used in machining processes as they offer an excellent tool life to cost ratio, but they quickly need replacing once the coated layer is worn away. It would be therefore useful to be able to measure the tool life remaining non-destructively and cheaply. To achieve this, the work presented here aims to measure the thickness of the coated layer of high-speed cutting tools by using Barkhausen noise (BHN) techniques. Coated high-speed steel specimens coated with two different materials (chromium nitride (CrN), titanium nitride (TiN)) were tested using a cost-effective measuring system developed for this study. Sensory features were extracted from the signal received from a pick-up coil and the signal features, Root mean square, peak count, and signal energy, were successfully correlated with the thickness of the coating layer on high-speed steel (HSS) specimens. The results suggest that the Barkhausen noise measuring system developed in this study can successfully indicate the different thickness of the coating layer on CrN/TiN coated HSS specimens.


Barkhausen noise Coating High-speed steel 


  1. 1.
    Bobzin K High-performance coatings for cutting tools. CIRP Journal of Manufacturing Science and Technology. doi:  10.1016/j.cirpj.2016.11.004
  2. 2.
    Fernández-Valdivielso A, López de Lacalle LN, Urbikain G, Rodriguez A (2015) Detecting the key geometrical features and grades of carbide inserts for the turning of nickel-based alloys concerning surface integrity. Proc Inst Mech Eng C J Mech Eng Sci 230(20):3725–3742. doi: 10.1177/0954406215616145 CrossRefGoogle Scholar
  3. 3.
    Kim DM, Lee I, Kim SK, Kim BH, Park HW (2016) Influence of a micropatterned insert on characteristics of the tool–workpiece interface in a hard turning process. J Mater Process Technol 229:160–171. doi: 10.1016/j.jmatprotec.2015.09.018 CrossRefGoogle Scholar
  4. 4.
    Olovsjö S, Nyborg L (2012) Influence of microstructure on wear behaviour of uncoated WC tools in turning of Alloy 718 and Waspaloy. Wear 282–283:12–21. doi: 10.1016/j.wear.2012.01.004 CrossRefGoogle Scholar
  5. 5.
    Thornton R, Slatter T, Lewis R (2014) Effects of deep cryogenic treatment on the wear development of H13A tungsten carbide inserts when machining AISI 1045 steel. Prod Eng 8(3):355–364. doi: 10.1007/s11740-013-0518-7 CrossRefGoogle Scholar
  6. 6.
    Bushlya V, Zhou J, Ståhl JE (2012) Effect of cutting conditions on machinability of superalloy Inconel 718 during high speed turning with coated and uncoated PCBN tools. Procedia CIRP 3:370–375. doi: 10.1016/j.procir.2012.07.064 CrossRefGoogle Scholar
  7. 7.
    Özbek NA, Çiçek A, Gülesin M, Özbek O (2016) Effect of cutting conditions on wear performance of cryogenically treated tungsten carbide inserts in dry turning of stainless steel. Tribol Int 94:223–233. doi: 10.1016/j.triboint.2015.08.024 CrossRefGoogle Scholar
  8. 8.
    Seemuang N, McLeay T, Slatter T (2016) Using spindle noise to monitor tool wear in a turning process. Int J Adv Manuf Technol 86(9):2781–2790. doi: 10.1007/s00170-015-8303-8 CrossRefGoogle Scholar
  9. 9.
    Duboust N, Melis D, Pinna C, Ghadbeigi H, Collis A, Ayvar-Soberanis S, Kerrigan K (2016) Machining of carbon fibre: optical surface damage characterisation and tool wear study. Procedia CIRP 45:71–74. doi: 10.1016/j.procir.2016.02.170 CrossRefGoogle Scholar
  10. 10.
    Maia LHA, Abrao AM, Vasconcelos WL, Sales WF, Machado AR (2015) A new approach for detection of wear mechanisms and determination of tool life in turning using acoustic emission. Tribol Int 92:519–532. doi: 10.1016/j.triboint.2015.07.024 CrossRefGoogle Scholar
  11. 11.
    Ferrari G, Gómez MP (2015) Correlation between acoustic emission, thrust and tool wear in drilling. Procedia Materials Science 8:693–701. doi: 10.1016/j.mspro.2015.04.126 CrossRefGoogle Scholar
  12. 12.
    Li X (2002) A brief review: acoustic emission method for tool wear monitoring during turning. Int J Mach Tools Manuf 42(2):157–165. doi: 10.1016/S0890-6955(01)00108-0 CrossRefGoogle Scholar
  13. 13.
    Dinakaran D, Sampathkumar S, Sivashanmugam N (2009) An experimental investigation on monitoring of crater wear in turning using ultrasonic technique. Int J Mach Tools Manuf 49(15):1234–1237. doi: 10.1016/j.ijmachtools.2009.08.001 CrossRefGoogle Scholar
  14. 14.
    Yao CW, Chien YX (2014) A diagnosis method of wear and tool life for an endmill by ultrasonic detection. J Manuf Syst 33(1):129–138. doi: 10.1016/j.jmsy.2013.05.003 CrossRefGoogle Scholar
  15. 15.
    Wang C, Ming W, Chen M (2016) Milling tool’s flank wear prediction by temperature dependent wear mechanism determination when machining Inconel 182 overlays. Tribol Int. doi: 10.1016/j.triboint.2016.08.036 Google Scholar
  16. 16.
    Simeone A, Woolley EB, Rahimifard S (2015) Tool state assessment for reduction of life cycle environmental impacts of aluminium machining processes via infrared temperature monitoring. Procedia CIRP 29:526–531. doi: 10.1016/j.procir.2015.02.070 CrossRefGoogle Scholar
  17. 17.
    Moorthy V, Choudhary BK, Vaidyanathan S, Jayakumar T, Rao KBS, Raj B (1999) An assessment of low cycle fatigue damage using magnetic Barkhausen emission in 9Cr-1Mo ferritic steel. Int J Fatigue 21(3):263–269. doi: 10.1016/s0142-1123(98)00079-6 CrossRefGoogle Scholar
  18. 18.
    Vincent A, Pasco L, Morin M, Kleber X, Delnondedieu M (2005) Magnetic Barkhausen noise from strain-induced martensite during low cycle fatigue of 304 L austenitic stainless steel. Acta Mater 53(17):4579–4591. doi: 10.1016/j.actamat.2005.06.016 CrossRefGoogle Scholar
  19. 19.
    Lindgren M, Lepistö T (2000) Application of a novel type Barkhausen noise sensor to continuous fatigue monitoring. NDT&E International 33(6):423–428. doi: 10.1016/s0963-8695(00)00011-6 CrossRefGoogle Scholar
  20. 20.
    Moorthy V, Shaw BA, Mountford P, Hopkins P (2005) Magnetic Barkhausen emission technique for evaluation of residual stress alteration by grinding in case-carburised En36 steel. Acta Mater 53(19):4997–5006. doi: 10.1016/j.actamat.2005.06.029 CrossRefGoogle Scholar
  21. 21.
    Wilson JW, Tian GY, Moorthy V, Shaw BA (2009) Magneto-acoustic emission and magnetic barkhausen emission for case depth measurement in En36 gear steel. IEEE Trans Magn 45(1):177–183. doi: 10.1109/tmag.2008.2007537 CrossRefGoogle Scholar
  22. 22.
    Sorsa A, Leiviska K, Santa-aho S, Lepisto T (2012) Quantitative prediction of residual stress and hardness in case-hardened steel based on the Barkhausen noise measurement. NDT & E International 46:100–106. doi: 10.1016/j.ndteint.2011.11.008 CrossRefGoogle Scholar
  23. 23.
    Hao XJ, Yin W, Strangwood M, Peyton AJ, Morris PF, Davis CL (2008) Off-line measurement of decarburization of steels using a multifrequency electromagnetic sensor. Scr Mater 58(11):1033–1036. doi: 10.1016/j.scriptamat.2008.01.042 CrossRefGoogle Scholar
  24. 24.
    Brinksmeier E, Schneider E, Theiner WA, Tönshoff HK (1984) Nondestructive testing for evaluating surface integrity. CIRP Ann Manuf Technol 33(2):489–509. doi: 10.1016/S0007-8506(16)30171-8 CrossRefGoogle Scholar
  25. 25.
    Santa-aho S, Hakanen M, Sorsa A, Vippola M, Leiviska K, Lepisto T (2014) Case depth verification of hardened samples with Barkhausen noise sweeps. In: Chimenti DE, Bond LJ, Thompson DO (eds) 40th annual review of progress in quantitative nondestructive evaluation: incorporating the 10th international conference on Barkhausen noise and micromagnetic testing, Vols 33a & 33b, AIP Conference Proceedings, vol 1581. Amer Inst Physics, Melville, pp 1307–1314. doi: 10.1063/1.4864972 Google Scholar
  26. 26.
    Bach G, Goebbels K, Theiner WA (1988) Characterization of hardening depth by barkhausen noise measurement. Mater Eval 46(12):1576–1580Google Scholar
  27. 27.
    Moorthy V, Shaw BA, Brimble K (2004) Testing of case depth in case carburized gear steels using magnetic barkhausen emission technique. Mater Eval 62(5):523–527Google Scholar
  28. 28.
    Vaidyanathan S, Moorthy V, Jayakumar T, Raj B (2000) Evaluation of induction hardened case depth through microstructural characterisation using magnetic Barkhausen emission technique. Mater Sci Technol 16(2):202–208. doi: 10.1179/026708300101507550 CrossRefGoogle Scholar
  29. 29.
    Dubois M, Fiset M (1995) Evaluation of case depth on steels by Barkhausen noise measurement. Mater Sci Technol 11(3):264–267CrossRefGoogle Scholar
  30. 30.
    Blaow MM, Shaw BA (2015) Effect of excitation field strength on magnetic Barkhausen noise profile in case carburized EN 36 Steel. In: Oral AY, Bahsi ZB, Ozer M, Sezer M, Akoz ME (eds) 4th International Congress in Advances in Applied Physics and Materials Science, vol 1653. AIP Conference Proceedings. Amer Inst Physics, Melville. doi: 10.1063/1.4914212
  31. 31.
    Blaow M, Evans JT, Shaw BA (2005) Surface decarburisation of steel detected by magnetic Barkhausen emission. J Mater Sci 40(20):5517–5520. doi: 10.1007/s10853-005-4240-5 CrossRefGoogle Scholar
  32. 32.
    Stupakov O, Perevertov O, Tomáš I, Skrbek B (2011) Evaluation of surface decarburization depth by magnetic Barkhausen noise technique. J Magn Magn Mater 323(12):1692–1697. doi: 10.1016/j.jmmm.2011.01.039 CrossRefGoogle Scholar
  33. 33.
    Santa-aho S, Vippola M, Sorsa A, Leiviskä K, Lindgren M, Lepistö T (2012) Utilization of Barkhausen noise magnetizing sweeps for case-depth detection from hardened steel. NDT & E International 52(0):95–102. doi: 10.1016/j.ndteint.2012.05.005 CrossRefGoogle Scholar
  34. 34.
    Drehmer A, Gerhardt GJL, Missell FP (2013) Case depth in SAE 1020 steel using Barkhausen noise. Mater Res-Ibero-am J Mater 16(5):1015–1019. doi: 10.1590/s1516-14392013005000095 Google Scholar
  35. 35.
    Franco FA, Gonzalez MFR, de Campos MF, Padovese LR (2013) Relation between magnetic Barkhausen noise and hardness for Jominy quench tests in SAE 4140 and 6150 steels. J Nondestruct Eval 32(1):93–103. doi: 10.1007/s10921-012-0162-8 CrossRefGoogle Scholar
  36. 36.
    Vashista M, Moorthy V (2013) Influence of applied magnetic field strength and frequency response of pick-up coil on the magnetic barkhausen noise profile. J Magn Magn Mater 345:208–214. doi: 10.1016/j.jmmm.2013.06.038 CrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of SheffieldSheffieldUK

Personalised recommendations