Advertisement

Microstructuring strategies of cBN grinding wheels

  • Ali ZahediEmail author
  • Bahman Azarhoushang
ORIGINAL ARTICLE

Abstract

A picosecond laser is utilized for microstructuring of a metal-bonded cBN grinding wheel. Two types of structure, both with 15% reduction of the wheel surface area, but with different patterns are produced. The effect of structuring on surface roughness and grinding forces in the cylindrical plunge grinding of 100Cr6 is studied. Reducing the abrasive layer area (15% reduction of the wheel surface area) causes the reduction of grinding forces up to 60%, while the roughness values increase up to 30%. The concentrated structuring approach led to better structure persistence of the wheel structure in comparison with the uniformly distributed structure. Furthermore, temperature measurement demonstrated that microstructuring leads to reduced wheel and workpiece contact zone temperatures.

Keywords

Picosecond Yb:YAG laser Thermal ablation Microstructuring cBN grinding wheel Metal bond Grinding force Grinding temperature 100Cr6 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Marinescu ID, Hitchiner MP, Uhlmann E et al. (2006) Handbook of machining with grinding wheels. Taylor & FrancisGoogle Scholar
  2. 2.
    Cheng K, Huo D (eds) (2013) Micro-cutting: fundamentals and applications. Microsystem and nanotechnology series. Wiley, ChichesterGoogle Scholar
  3. 3.
    Wegener K, Hoffmeister H-W, Karpuschewski B et al (2011) Conditioning and monitoring of grinding wheels. CIRP Ann Manuf Technol 60(2):757–777. doi: 10.1016/j.cirp.2011.05.003 CrossRefGoogle Scholar
  4. 4.
    Westkämper E (1995) Grinding assisted by Nd:YAG lasers. CIRP Ann Manuf Technol 44(1):317–320. doi: 10.1016/S0007-8506(07)62333-6 CrossRefGoogle Scholar
  5. 5.
    Zhang C, Shin Y (2002) A novel laser-assisted truing and dressing technique for vitrified CBN wheels. Int J Mach Tools Manuf 42(7):825–835. doi: 10.1016/S0890-6955(02)00014-7 CrossRefGoogle Scholar
  6. 6.
    Dold C, Transchel R, Rabiey M et al (2011) A study on laser touch dressing of electroplated diamond wheels using pulsed picosecond laser sources. CIRP Ann Manuf Technol 60(1):363–366. doi: 10.1016/j.cirp.2011.03.117 CrossRefGoogle Scholar
  7. 7.
    Walter C, Rabiey M, Warhanek M et al (2012) Dressing and truing of hybrid bonded CBN grinding tools using a short-pulsed fibre laser. CIRP Ann Manuf Technol 61(1):279–282. doi: 10.1016/j.cirp.2012.03.001 CrossRefGoogle Scholar
  8. 8.
    Walter C, Komischke T, Kuster F et al (2014) Laser-structured grinding tools—generation of prototype patterns and performance evaluation. J Mater Process Technol 214(4):951–961. doi: 10.1016/j.jmatprotec.2013.11.015 CrossRefGoogle Scholar
  9. 9.
    Walter C, Komischke T, Weingärtner E et al (2014) Structuring of CBN grinding tools by ultrashort pulse laser ablation. Procedia CIRP 14:31–36. doi: 10.1016/j.procir.2014.03.093 CrossRefGoogle Scholar
  10. 10.
    Tawakoli T, Azarhoushang B (2011) Intermittent grinding of ceramic matrix composites (CMCs) utilizing a developed segmented wheel. Int J Mach Tools Manuf 51(2):112–119. doi: 10.1016/j.ijmachtools.2010.11.002 CrossRefGoogle Scholar
  11. 11.
    Azarhoushang B (2011) Intermittent grinding of ceramic matrix composites. PhD dissertation, Universität StuttgartGoogle Scholar
  12. 12.
    Zahedi A, Tawakoli T, Akbari J et al (2014) Conditioning of vitrified bond CBN grinding wheels using a picosecond laser. Advanced Materials Research Advances in Abrasive Technology XVII:573–578CrossRefGoogle Scholar
  13. 13.
    Zahedi A, Tawakoli T, Azarhoushang B et al (2015) Picosecond laser treatment of metal-bonded CBN and diamond superabrasive surfaces. Int J Adv Manuf Technol 76(5–8):1479–1491. doi: 10.1007/s00170-014-6383-5 CrossRefGoogle Scholar
  14. 14.
    Rabiey M (2011) Dry grinding with CBN wheels, the effect of structuring. Zugl.: Stuttgart, Univ., Diss., 2011, 1., Aufl. IPA-IAO-Forschung und Praxis, vol 503. Jost-Jetter-Verl., HeimsheimGoogle Scholar
  15. 15.
    Zhu D, Yan S, Li B (2014) Single-grit modeling and simulation of crack initiation and propagation in SiC grinding using maximum undeformed chip thickness. Comput Mater Sci 92(0):13–21. doi: 10.1016/j.commatsci.2014.05.019 CrossRefGoogle Scholar
  16. 16.
    Werner G (1971) Kinematik und Mechanik des Schleifprozesses. MainzGoogle Scholar
  17. 17.
    Shaw MC (1996) Principles of abrasive processing. Clarendon PressGoogle Scholar
  18. 18.
    Vesali A, Tawakoli T (2014) Study on hydrodynamic pressure in grinding contact zone considering grinding parameters and grinding wheel specifications. Procedia CIRP 14:13–18. doi: 10.1016/j.procir.2014.03.053 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2017

Authors and Affiliations

  1. 1.Institute of Grinding and Precision Technology (KSF)Furtwangen University of Applied SciencesVillingen-SchwenningenGermany

Personalised recommendations