Condition monitoring towards energy-efficient manufacturing: a review



Recently, sustainable development has obtained increasing attentions from governments, industry, and academia owing to the limited natural resources. In the area of energy consumption, manufacturing accounts for a major portion of the total energy usage in industry. There is a clear necessity for energy-efficient manufacturing by optimizing manufacturing activities. Condition monitoring is the technology that provides runtime information for optimization. This paper aims to provide a better understanding of past achievements and future trends of condition monitoring towards energy-efficient manufacturing. Since there are a variety of sensors and technologies that can be used for condition monitoring towards energy-efficient manufacturing, this paper divides manufacturing activities into three levels, namely unit process level, shop-floor level, and supply chain level, and summarizes and discusses the sensors and technologies required to enable energy-efficient manufacturing on each level. With the advancement of technology, condition monitoring shows the characteristic of intelligence. Intelligent sensors that can be applied to condition monitoring in energy-efficient manufacturing are also reviewed. This paper can be helpful to manufacturers who are willing to improve energy efficiency in own manufacturing practice.


Sustainable development Energy-efficient manufacturing Condition monitoring Intelligence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bruntland GH (1987) Report of the world commission on environment and development: our common future. doi:  10.1016/S0007-8506(07)60017-1. Accessed 5 August 2014
  2. 2.
    Azapagic A, Perdan S (2000) Indicators of sustainable development for industry: a general framework. Process Saf Environ Prot 78(4):243–261. doi: 10.1205/095758200530763 CrossRefGoogle Scholar
  3. 3.
    Garetti M, Taisch M (2012) Sustainable manufacturing: trends and research challenges. Production Planning & Control 23(2–3):83–104. doi: 10.1080/09537287.2011.591619 CrossRefGoogle Scholar
  4. 4.
    Hauschild M, Jeswiet J, Alting L (2005) From life cycle assessment to sustainable production: status and perspectives. CIRP Ann Manuf Technol 54(2):1–21. doi: 10.1016/S0007-8506(07)60017-1 CrossRefGoogle Scholar
  5. 5.
    Haapala KR, Zhao F, Camelio J, Sutherland JW, Skerlos SJ, Dornfeld DA, Jawahir I, Clarens AF, Rickli JL (2013) A review of engineering research in sustainable manufacturing. J Manuf Sci Eng 135(4):041013CrossRefGoogle Scholar
  6. 6.
    Schipper M (2006) Energy-related carbon dioxide emissions in US manufacturing. Energy Information Administration:8–10Google Scholar
  7. 7.
    ISO (2011) Win the energy challenge with ISO 50001. International Organization for Standardization, GenevaGoogle Scholar
  8. 8.
    NACFAM (2014) Sustainable manufacturing. Accessed 5, November 2014
  9. 9.
    Commission E (2014) Intelligent Manufacturing Systems 2020. Accessed 5, November 2014
  10. 10.
    Wang T, Zhang Y, Yu H, Wang F (2012) Advanced manufacturing technology in China: a roadmap to 2050. SpringerGoogle Scholar
  11. 11.
    Meike D, Ribickis L Energy efficient use of robotics in the automobile industry. In: Advanced robotics (ICAR), 2011 15th International Conference on, 2011. IEEE, pp 507–511Google Scholar
  12. 12.
    Abdul Rashid S, Evans S, Longhurst P (2008) A comparison of four sustainable manufacturing strategies. Int J Sustain Eng 1(3):214–229. doi: 10.1080/19397030802513836 CrossRefGoogle Scholar
  13. 13.
    Tao F, Bi LN, Zuo Y, Nee AYC (2016) A hybrid group leader algorithm for green material selection with energy consideration in product design. CIRP Ann Manuf Technol 65(1):9–12. doi: 10.1016/j.cirp.2016.04.086 CrossRefGoogle Scholar
  14. 14.
    Duflou JR, Sutherland JW, Dornfeld D, Herrmann C, Jeswiet J, Kara S, Hauschild M, Kellens K (2012) Towards energy and resource efficient manufacturing: a processes and systems approach. CIRP Ann Manuf Technol 61(2):587–609. doi: 10.1016/j.cirp.2012.05.002 CrossRefGoogle Scholar
  15. 15.
    Peng T, Xu X (2014) Energy-efficient machining systems: a critical review. Int J Adv Manuf Technol 72(9–12):1389–1406CrossRefGoogle Scholar
  16. 16.
    Zhou L, Li J, Li F, Meng Q, Li J, Xu X (2016) Energy consumption model and energy efficiency of machine tools: a comprehensive literature review. J Clean Prod 112(5):3721–3734. doi: 10.1016/j.jclepro.2015.05.093 CrossRefGoogle Scholar
  17. 17.
    Zhang Y (2013) Energy efficiency techniques in machining process: a review. Int J Adv Manuf Technol 71(5–8):1123–1132. doi: 10.1007/s00170-013-5551-3 Google Scholar
  18. 18.
    Salonitis K, Ball P (2013) Energy efficient manufacturing from machine tools to manufacturing systems. Procedia CIRP 7:634–639. doi: 10.1016/j.procir.2013.06.045 CrossRefGoogle Scholar
  19. 19.
    Gahm C, Denz F, Dirr M, Tuma A (2016) Energy-efficient scheduling in manufacturing companies: a review and research framework. Eur J Oper Res 248(3):744–757. doi: 10.1016/j.ejor.2015.07.017 MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Schulze M, Nehler H, Ottosson M, Thollander P (2016) Energy management in industry—a systematic review of previous findings and an integrative conceptual framework. J Clean Prod 112(5):3692–3708. doi: 10.1016/j.jclepro.2015.06.060 CrossRefGoogle Scholar
  21. 21.
    Lee D, Cheng C-C (2016) Energy savings by energy management systems: a review. Renew Sust Energ Rev 56:760–777. doi: 10.1016/j.rser.2015.11.067 CrossRefGoogle Scholar
  22. 22.
    Meijer GCM (1994) Concepts and focus point for intelligent sensor systems. Sensors Actuators A Phys 41(1):183–191CrossRefGoogle Scholar
  23. 23.
    Schmitt R, Bittencourt JL, Bonefeld R (2011) Modelling machine tools for self-optimisation of energy consumption. Glocalized Solutions for Sustainability in Manufacturing. Springer, In, pp 253–257. doi: 10.1007/978-3-642-19692-8_44 Google Scholar
  24. 24.
    Kellens K, Dewulf W, Overcash M, Hauschild MZ, Duflou JR (2012) Methodology for systematic analysis and improvement of manufacturing unit process life cycle inventory (UPLCI) CO2PE! initiative (cooperative effort on process emissions in manufacturing). Part 2: case studies. The International Journal of Life Cycle Assessment 17(2):242–251CrossRefGoogle Scholar
  25. 25.
    Avram OI, Xirouchakis P (2011) Evaluating the use phase energy requirements of a machine tool system. J Clean Prod 19(6):699–711CrossRefGoogle Scholar
  26. 26.
    Herrmann C, Suh S-H, Bogdanski G, Zein A, Cha J-M, Um J, Jeong S, Guzman A (2011) Context-aware analysis approach to enhance industrial smart metering. Glocalized Solutions for Sustainability in Manufacturing. Springer, In, pp 323–328Google Scholar
  27. 27.
    Gutowski T, Murphy C, Allen D, Bauer D, Bras B, Piwonka T, Sheng P, Sutherland J, Thurston D, Wolff E (2005) Environmentally benign manufacturing: observations from Japan, Europe and the United States. J Clean Prod 13(1):1–17CrossRefGoogle Scholar
  28. 28.
    Behrendt T, Zein A, Min S (2012) Development of an energy consumption monitoring procedure for machine tools. CIRP Ann Manuf Technol 61(1):43–46. doi: 10.1016/j.cirp.2012.03.103 CrossRefGoogle Scholar
  29. 29.
    Drake R, Yildirim MB, Twomey JM, Whitman LE, Ahmad JS, Lodhia P (2006) Data collection framework on energy consumption in manufacturing. In: Proceedings of the industrial engineering research conference, institute of industrial engineers annual meeting, Orlando, Florida, 15–19 May 2006Google Scholar
  30. 30.
    Salonitis K (2015) Energy efficiency assessment of grinding strategy. International Journal of Energy Sector Management 9(1):20–37. doi: 10.1108/IJESM-04-2013-0009 CrossRefGoogle Scholar
  31. 31.
    Neugebauer R, Wabner M, Rentzsch H, Ihlenfeldt S (2011) Structure principles of energy efficient machine tools. CIRP J Manuf Sci Technol 4(2):136–147. doi: 10.1016/j.cirpj.2011.06.017 CrossRefGoogle Scholar
  32. 32.
    Hu S, Liu F, He Y, Hu T (2012) An on-line approach for energy efficiency monitoring of machine tools. J Clean Prod 27:133–140. doi: 10.1016/j.jclepro.2012.01.013 CrossRefGoogle Scholar
  33. 33.
    Landers RG, Ulsoy AG, Furness RJ (2002) Process monitoring and control of machining operations. In Osita D, Nwokah I, Hurmuzlu Y (eds) Mechanical systems design handbook (Section I). Boca Raton: CRC PressGoogle Scholar
  34. 34.
    Wang S, Zhou H, R-m Y, Yi Z (2010) Concept and application of smart meter. Power System Technology 34:17–23Google Scholar
  35. 35.
    Kara S, Bogdanski G, Li W (2011) Electricity metering and monitoring in manufacturing systems. In: Glocalized Solutions for Sustainability in Manufacturing. Springer, pp 1–10Google Scholar
  36. 36.
    ANSI (2010) ANSI C12.20-2010 American national standard for electricity meters—0.2 and 0.5 accuracy classesGoogle Scholar
  37. 37.
    IEC (2003) IEC 62053-21: 2003—electricity metering equipment (a.c.)—particular requirements—part 21: static meters for active energy (classes 1 and 2)Google Scholar
  38. 38.
    IEC (2003) IEC 62053-22:2003—electricity metering equipment (a.c.)—particular requirements—part 22: static meters for active energy (classes 0,2 S and 0,5 S)Google Scholar
  39. 39.
    IEC (2003) IEC 62053-23: 2003—IEC 62053-23:2003: electricity metering equipment (a.c.)—particular requirements—part 23: static meters for reactive energy (classes 2 and 3)Google Scholar
  40. 40.
    IEC (2014) IEC 62053-24:2014—electricity metering equipment (a.c.)—particular requirements—part 24: static meters for reactive energy at fundamental frequency (classes 0,5 S, 1S and 1)Google Scholar
  41. 41.
    IEC (2016) IEC 60051-1: 2016: direct acting indicating analogue electrical measuring instruments and their accessories—part 1: definitions and general requirements common to all parts.Google Scholar
  42. 42.
    Luan S-W, Teng J-H, Chan S-Y, Hwang L-C (2009) Development of a smart power meter for AMI based on ZigBee communication. In: International conference on power electronics and drive systems (PEDS). pp 661–665Google Scholar
  43. 43.
    Wang L, Givehchi M, Adamson G, Holm M (2011) A sensor-driven 3D model-based approach to remote real-time monitoring. CIRP Ann Manuf Technol 60(1):493–496. doi: 10.1016/j.cirp.2011.03.034 CrossRefGoogle Scholar
  44. 44.
    Wang L (2015) Collaborative robot monitoring and control for enhanced sustainability. Int J Adv Manuf Technol 81(9):1433–1445. doi: 10.1007/s00170-013-4864-6 CrossRefGoogle Scholar
  45. 45.
    Wang L, Sams R, Verner M, Xi F (2003) Integrating Java 3D model and sensor data for remote monitoring and control. Robot Comput Integr Manuf 19(1–2):13–19. doi: 10.1016/S0736-5845(02)00058-3 CrossRefGoogle Scholar
  46. 46.
    Wang L, Nace A (2009) A sensor-driven approach to web-based machining. J Intell Manuf 20(1):1–14. doi: 10.1007/s10845-008-0099-z CrossRefGoogle Scholar
  47. 47.
    Tao F, Zuo Y, Xu LD, Lv L, Zhang L (2014) Internet of things and BOM-based life cycle assessment of energy-saving and emission-reduction of products. IEEE Transactions on Industrial Informatics 10(2):1252–1261. doi: 10.1109/TII.2014.2306771 CrossRefGoogle Scholar
  48. 48.
    Tao F, Wang Y, Zuo Y, Yang H, Zhang M (2016) Internet of things in product life-cycle energy management. Journal of Industrial Information Integration. doi: 10.1016/j.jii.2016.03.001 Google Scholar
  49. 49.
    Shrouf F, Miragliotta G (2015) Energy management based on internet of things: practices and framework for adoption in production management. J Clean Prod 100:235–246. doi: 10.1016/j.jclepro.2015.03.055 CrossRefGoogle Scholar
  50. 50.
    Wang L, Törngren M, Onori M (2015) Current status and advancement of cyber-physical systems in manufacturing. J Manuf Syst 37(2):517–527. doi: 10.1016/j.jmsy.2015.04.008 CrossRefGoogle Scholar
  51. 51.
    Vijayaraghavan A, Dornfeld D (2010) Automated energy monitoring of machine tools. CIRP Ann Manuf Technol 59(1):21–24. doi: 10.1016/j.cirp.2010.03.042 CrossRefGoogle Scholar
  52. 52.
    Peng T, Xu X, Wang L (2014) A novel energy demand modelling approach for CNC machining based on function blocks. J Manuf Syst 33(1):196–208. doi: 10.1016/j.jmsy.2013.12.004 CrossRefGoogle Scholar
  53. 53.
    O’Driscoll E, O’Donnell GE (2013) Industrial power and energy metering—a state-of-the-art review. J Clean Prod 41:53–64. doi: 10.1016/j.jclepro.2012.09.046 CrossRefGoogle Scholar
  54. 54.
    Kara S, Li W (2011) Unit process energy consumption models for material removal processes. CIRP Ann Manuf Technol 60(1):37–40. doi: 10.1016/j.cirp.2011.03.018 CrossRefGoogle Scholar
  55. 55.
    Lu T, Jawahir IS (2015) Metrics-based sustainability evaluation of cryogenic machining. Procedia CIRP 29:520–525. doi: 10.1016/j.procir.2015.02.067 CrossRefGoogle Scholar
  56. 56.
    Mori M, Fujishima M, Inamasu Y, Oda Y (2011) A study on energy efficiency improvement for machine tools. CIRP Ann Manuf Technol 60(1):145–148. doi: 10.1016/j.cirp.2011.03.099 CrossRefGoogle Scholar
  57. 57.
    Oda Y, Mori M, Ogawa K, Nishida S, Fujishima M, Kawamura T (2012) Study of optimal cutting condition for energy efficiency improvement in ball end milling with tool-workpiece inclination. CIRP Ann Manuf Technol 61(1):119–122. doi: 10.1016/j.cirp.2012.03.034 CrossRefGoogle Scholar
  58. 58.
    Bi ZM, Wang L (2012) Optimization of machining processes from the perspective of energy consumption: a case study. J Manuf Syst 31(4):420–428. doi: 10.1016/j.jmsy.2012.07.002 CrossRefGoogle Scholar
  59. 59.
    Bi ZM, Wang L (2012) Energy modeling of machine tools for optimization of machine setups. IEEE Trans Autom Sci Eng 9(3):607–613. doi: 10.1109/TASE.2012.2195173 CrossRefGoogle Scholar
  60. 60.
    Basu S, Sutherland J Multi-objective decision making for environmentally responsible manufacturing. In: Proceedings 6th International Seminar on Life Cycle Engineering, 1999. pp 323–331Google Scholar
  61. 61.
    Yan J, Li L (2013) Multi-objective optimization of milling parameters—the trade-offs between energy, production rate and cutting quality. J Clean Prod 52:462–471. doi: 10.1016/j.jclepro.2013.02.030 CrossRefGoogle Scholar
  62. 62.
    Camposeco-Negrete C (2015) Optimization of cutting parameters using response surface method for minimizing energy consumption and maximizing cutting quality in turning of AISI 6061 T6 aluminum. J Clean Prod 91:109–117. doi: 10.1016/j.jclepro.2014.12.017 CrossRefGoogle Scholar
  63. 63.
    Wang S, Lu X, Li XX, Li WD (2015) A systematic approach of process planning and scheduling optimization for sustainable machining. J Clean Prod 87:914–929. doi: 10.1016/j.jclepro.2014.10.008 CrossRefGoogle Scholar
  64. 64.
    Smith GT (1993) CNC machining technology (book). Springer, London and New YorkCrossRefGoogle Scholar
  65. 65.
    Ferraz F Jr, Coelho RT (2005) Data acquisition and monitoring in machine tools with CNC of open architecture using internet. Int J Adv Manuf Technol 26(1–2):90–97. doi: 10.1007/s00170-003-1977-3 CrossRefGoogle Scholar
  66. 66.
    Zhou Y, Mei X, Jiang G (2009) Technology on large scale numerical control machine tool condition monitoring based on built-in sensors. Journal of Mechanical Engineering 45(4):125–130CrossRefGoogle Scholar
  67. 67.
    Zhou Z, Long Y, Liu Q (2007) Embedded-based network numerical control technology and system. Chinese Journal of Mechanical Engineering 5:1–7Google Scholar
  68. 68.
    Ridwan F, Xu X (2013) Advanced CNC system with in-process feed-rate optimisation. Robot Comput Integr Manuf 29(3):12–20. doi: 10.1016/j.rcim.2012.04.008 CrossRefGoogle Scholar
  69. 69.
    Ridwan F, Xu X, Liu G (2012) A framework for machining optimisation based on STEP-NC. J Intell Manuf 23(3):423–441. doi: 10.1007/s10845-010-0380-9 CrossRefGoogle Scholar
  70. 70.
    Siddhpura A, Paurobally R (2012) A review of flank wear prediction methods for tool condition monitoring in a turning process. Int J Adv Manuf Technol 65(1–4):371–393. doi: 10.1007/s00170-012-4177-1 Google Scholar
  71. 71.
    Teti R, Jemielniak K, O’Donnell G, Dornfeld D (2010) Advanced monitoring of machining operations. CIRP Ann Manuf Technol 59(2):717–739. doi: 10.1016/j.cirp.2010.05.010 CrossRefGoogle Scholar
  72. 72.
    Liang SY, Hecker RL, Landers RG (2004) Machining process monitoring and control: the state-of-the-art. Journal of Manufacturing Science & Engineering 126(2):297–310. doi: 10.1115/1.1707035 CrossRefGoogle Scholar
  73. 73.
    Rehorn AG, Jiang J, Orban PE (2004) State-of-the-art methods and results in tool condition monitoring: a review. Int J Adv Manuf Technol 26(7–8):693–710. doi: 10.1007/s00170-004-2038-2 Google Scholar
  74. 74.
    Abellan-Nebot JV, Romero Subirón F (2009) A review of machining monitoring systems based on artificial intelligence process models. Int J Adv Manuf Technol 47(1–4):237–257. doi: 10.1007/s00170-009-2191-8 Google Scholar
  75. 75.
    Li X (2002) A brief review: acoustic emission method for tool wear monitoring during turning. Int J Mach Tools Manuf 42(2):157–165. doi: 10.1016/S0890-6955(01)00108-0 CrossRefGoogle Scholar
  76. 76.
    Snr D, Dimla E (2000) Sensor signals for tool-wear monitoring in metal cutting operations—a review of methods. Int J Mach Tools Manuf 40(8):1073–1098CrossRefGoogle Scholar
  77. 77.
    Kurada S, Bradley C (1997) A review of machine vision sensors for tool condition monitoring. Comput Ind 34(1):55–72. doi: 10.1016/S0166-3615(96)00075-9 CrossRefGoogle Scholar
  78. 78.
    Byrne G, Dornfeld D, Inasaki I, Ketteler G, König W, Teti R (1995) Tool condition monitoring (TCM)—the status of research and industrial application. CIRP Ann Manuf Technol 44(2):541–567. doi: 10.1016/S0007-8506(07)60503-4 CrossRefGoogle Scholar
  79. 79.
    Shiraishi M (1988) Scope of in-process measurement, monitoring and control techniques in machining processes—part 1: in-process techniques for tools. Precis Eng 10(4):179–189CrossRefGoogle Scholar
  80. 80.
    Dutta S, Pal SK, Sen R (2016) On-machine tool prediction of flank wear from machined surface images using texture analyses and support vector regression. Precis Eng 43:34–42CrossRefGoogle Scholar
  81. 81.
    Wang Y, Brzezinski AJ, Qiao X, Ni J (2017) Heuristic feature selection for shaving tool wear classification. J Manuf Sci Eng 139(4):041001CrossRefGoogle Scholar
  82. 82.
    Chen X, Li B (2007) Acoustic emission method for tool condition monitoring based on wavelet analysis. Int J Adv Manuf Technol 33(9):968–976. doi: 10.1007/s00170-006-0523-5 CrossRefGoogle Scholar
  83. 83.
    Aghdam BH, Vahdati M, Sadeghi MH (2015) Vibration-based estimation of tool major flank wear in a turning process using ARMA models. Int J Adv Manuf Technol 76(9):1631–1642. doi: 10.1007/s00170-014-6296-3 CrossRefGoogle Scholar
  84. 84.
    Zhou JH, Pang CK, Zhong ZW, Lewis FL (2011) Tool wear monitoring using acoustic emissions by dominant-feature identification. IEEE Trans Instrum Meas 60(2):547–559. doi: 10.1109/TIM.2010.2050974 CrossRefGoogle Scholar
  85. 85.
    Wang G, Qian L, Guo Z (2013) Continuous tool wear prediction based on Gaussian mixture regression model. Int J Adv Manuf Technol 66(9):1921–1929. doi: 10.1007/s00170-012-4470-z CrossRefGoogle Scholar
  86. 86.
    Nakai ME, Aguiar PR, Guillardi H Jr, Bianchi EC, Spatti DH, D’Addona DM (2015) Evaluation of neural models applied to the estimation of tool wear in the grinding of advanced ceramics. Expert Syst Appl 42(20):7026–7035. doi: 10.1016/j.eswa.2015.05.008 CrossRefGoogle Scholar
  87. 87.
    Ren Q, Baron L, Balazinski M, Botez R, Bigras P (2015) Tool wear assessment based on type-2 fuzzy uncertainty estimation on acoustic emission. Appl Soft Comput 31:14–24. doi: 10.1016/j.asoc.2015.02.037 CrossRefGoogle Scholar
  88. 88.
    Lu M-C, Wan B-S (2013) Study of high-frequency sound signals for tool wear monitoring in micromilling. Int J Adv Manuf Technol 66(9):1785–1792. doi: 10.1007/s00170-012-4458-8 Google Scholar
  89. 89.
    Torabi AJ, Er MJ, Li X, Lim BS, Peen GO (2016) Application of clustering methods for online tool condition monitoring and fault diagnosis in high-speed milling processes. IEEE Syst J 10(2):721–732. doi: 10.1109/JSYST.2015.2425793 CrossRefGoogle Scholar
  90. 90.
    Segreto T, Simeone A, Teti R (2014) Principal component analysis for feature extraction and NN pattern recognition in sensor monitoring of chip form during turning. CIRP J Manuf Sci Technol 7(3):202–209. doi: 10.1016/j.cirpj.2014.04.005 CrossRefGoogle Scholar
  91. 91.
    Zhou Z, Liu Q, Ai Q, Xu C (2011) Intelligent monitoring and diagnosis for modern mechanical equipment based on the integration of embedded technology and FBGS technology. Measurement 44(9):1499–1511. doi: 10.1016/j.measurement.2011.05.018 CrossRefGoogle Scholar
  92. 92.
    Zhou Z, Tan Y, Liu M, Yang W, Li Z (2013) Actualities and development on dynamic monitoring and diagnosis with distributed fiber Bragg grating in mechanical systems. Journal of Mechanical Engineering 49(19):55–69CrossRefGoogle Scholar
  93. 93.
    Todd M, Johnson G, Althouse B, Vohra S (1998) Flexural beam-based fiber Bragg grating accelerometers. Photonics Technology Letters, IEEE 10(11):1605–1607CrossRefGoogle Scholar
  94. 94.
    Berkoff T, Kersey A (1996) Experimental demonstration of a fiber Bragg grating accelerometer. Photonics Technology Letters, IEEE 8(12):1677–1679CrossRefGoogle Scholar
  95. 95.
    Dai F, Huang G-J (2005) An acceleration sensor based on fiber Bragg gratings. Laser Journal 26(1):26–27Google Scholar
  96. 96.
    Zhang D, Yao K, Luo P, Jiang D (2009) Novel fiber bragg grating accelerometer with high resonant frequency. Chinese Journal of Scientific Instrument 30(7):1400–1403Google Scholar
  97. 97.
    Bacci da Silva M, Wallbank J (1999) Cutting temperature: prediction and measurement methods—a review. J Mater Process Technol 88(1):195–202CrossRefGoogle Scholar
  98. 98.
    Canning J, Bandyopadhyay S, Biswas P, Aslund M, Stevenson M, Cook K (2010) Regenerated fibre Bragg gratings. Frontiers in Guided Wave Optics and Optoelectronics:363–384Google Scholar
  99. 99.
    Samtaş G (2014) Measurement and evaluation of surface roughness based on optic system using image processing and artificial neural network. Int J Adv Manuf Technol 73(1–4):353–364. doi: 10.1007/s00170-014-5828-1 CrossRefGoogle Scholar
  100. 100.
    Wang X, Feng C (2002) Development of empirical models for surface roughness prediction in finish turning. Int J Adv Manuf Technol 20(5):348–356CrossRefGoogle Scholar
  101. 101.
    Benardos PG, Vosniakos GC (2003) Predicting surface roughness in machining: a review. Int J Mach Tools Manuf 43(8):833–844. doi: 10.1016/s0890-6955(03)00059-2 CrossRefGoogle Scholar
  102. 102.
    Griffiths B, Middleton R, Wilkie B (1994) Light scattering for the measurement of surface finish: a review. The International Journal of Production Research 32(11):2683–2694MATHCrossRefGoogle Scholar
  103. 103.
    Al-Kindi GA, Shirinzadeh B (2007) An evaluation of surface roughness parameters measurement using vision-based data. Int J Mach Tools Manuf 47(3–4):697–708. doi: 10.1016/j.ijmachtools.2006.04.013 CrossRefGoogle Scholar
  104. 104.
    Laopornpichayanuwat W, Visessamit J, Tianprateep M (2012) 3-D surface roughness profile of 316-stainless steel using vertical scanning interferometry with a superluminescent diode. Measurement 45(10):2400–2406. doi: 10.1016/j.measurement.2011.09.030 CrossRefGoogle Scholar
  105. 105.
    Wang H, To S, Chan CY (2013) Investigation on the influence of tool-tip vibration on surface roughness and its representative measurement in ultra-precision diamond turning. Int J Mach Tools Manuf 69:20–29. doi: 10.1016/j.ijmachtools.2013.02.006 CrossRefGoogle Scholar
  106. 106.
    Tchvialeva L, Markhvida I, Zeng H, McLean DI, Lui H, Lee TK (2010) Surface roughness measurement by speckle contrast under the illumination of light with arbitrary spectral profile. Opt Lasers Eng 48(7–8):774–778. doi: 10.1016/j.optlaseng.2010.03.004 CrossRefGoogle Scholar
  107. 107.
    Kayahan E, Oktem H, Hacizade F, Nasibov H, Gundogdu O (2010) Measurement of surface roughness of metals using binary speckle image analysis. Tribol Int 43(1–2):307–311. doi: 10.1016/j.triboint.2009.06.010 CrossRefGoogle Scholar
  108. 108.
    Fuh Y-K, Hsu KC, Fan JR (2012) Roughness measurement of metals using a modified binary speckle image and adaptive optics. Opt Lasers Eng 50(3):312–316. doi: 10.1016/j.optlaseng.2011.11.003 CrossRefGoogle Scholar
  109. 109.
    Klein A, Jerzak Z Ginseng for sustainable energy awareness: flexible energy monitoring using wireless sensor nodes. In: Proceedings of the Fourth ACM International Conference on Distributed Event-Based Systems, 2010. ACM, pp 109–110Google Scholar
  110. 110.
    Li L, Sun Z (2013) Dynamic energy control for energy efficiency improvement of sustainable manufacturing systems using Markov decision process. Systems, Man, and Cybernetics: Systems, IEEE Transactions on 43(5):1195–1205Google Scholar
  111. 111.
    Mouzon G, Yildirim MB, Twomey J (2007) Operational methods for minimization of energy consumption of manufacturing equipment. Int J Prod Res 45(18–19):4247–4271MATHCrossRefGoogle Scholar
  112. 112.
    Meike D, Pellicciari M, Berselli G (2014) Energy efficient use of multirobot production lines in the automotive industry: detailed system modeling and optimization. Automation Science and Engineering, IEEE Transactions on 11(3):798–809CrossRefGoogle Scholar
  113. 113.
    Cannata A, Karnouskos S, Taisch M Energy efficiency driven process analysis and optimization in discrete manufacturing. In: Industrial Electronics, 2009. IECON’09. 35th Annual Conference of IEEE, 2009. IEEE, pp 4449–4454Google Scholar
  114. 114.
    Le CV, Pang CK, Gan OP, Chee XM, Zhang DH, Luo M, Chan HL, Lewis FL (2013) Classification of energy consumption patterns for energy audit and machine scheduling in industrial manufacturing systems. Trans Inst Meas Control 35(5):583–592CrossRefGoogle Scholar
  115. 115.
    Brewer A, Sloan N, Landers TL (1999) Intelligent tracking in manufacturing. J Intell Manuf 10(3–4):245–250CrossRefGoogle Scholar
  116. 116.
    Huang GQ, Wright PK, Newman ST (2009) Wireless manufacturing: a literature review, recent developments, and case studies. Int J Comput Integr Manuf 22(7):579–594. doi: 10.1080/09511920701724934 CrossRefGoogle Scholar
  117. 117.
    Koschan A, Li S, Visich JK, Khumawala BM, Zhang C (2006) Radio frequency identification technology: applications, technical challenges and strategies. Sens Rev 26(3):193–202. doi: 10.1108/02602280610675474 CrossRefGoogle Scholar
  118. 118.
    Ngai EWT, Moon KKL, Riggins FJ, Yi CY (2008) RFID research: an academic literature review (1995–2005) and future research directions. Int J Prod Econ 112(2):510–520. doi: 10.1016/j.ijpe.2007.05.004 CrossRefGoogle Scholar
  119. 119.
    Steinhilper R, Freiberger S, Kübler F, Böhner J (2013) RFID integrated adaption of manufacturing execution systems for energy efficient production. In: Nee CAY, Song B, Ong S-K (eds) Re-engineering manufacturing for sustainability: proceedings of the 20th CIRP International Conference on Life Cycle Engineering. Springer, Singapore, pp 123–128. doi: 10.1007/978-981-4451-48-2_20 CrossRefGoogle Scholar
  120. 120.
    Shrouf F, Ordieres J, Miragliotta G Smart factories in Industry 4.0: a review of the concept and of energy management approached in production based on the Internet of Things paradigm. In: 2014 I.E. International Conference on Industrial Engineering and Engineering Management, 2014 2014. pp 697–701. doi: 10.1109/IEEM.2014.7058728
  121. 121.
    Ngai EWT, Chau DCK, Poon JKL, To CKM (2013) Energy and utility management maturity model for sustainable manufacturing process. Int J Prod Econ 146(2):453–464. doi: 10.1016/j.ijpe.2012.12.018 CrossRefGoogle Scholar
  122. 122.
    Salame C, Aillerie M, Khoury G, Duroc Y, Kaddour D (2012) Terragreen 2012: clean energy solutions for sustainable environment (CESSE) RFID potential impacts and future evolution for green projects. Energy Procedia 18:91–98. doi: 10.1016/j.egypro.2012.05.021 CrossRefGoogle Scholar
  123. 123.
    Shen W, Lang SYT, Wang L (2005) iShopFloor: an Internet-enabled agent-based intelligent shop floor. IEEE Trans Syst Man Cybern Part C Appl Rev 35(3):371–381. doi: 10.1109/TSMCC.2004.843224 CrossRefGoogle Scholar
  124. 124.
    Vrba P, Macůrek F, Mařík V (2008) Using radio frequency identification in agent-based control systems for industrial applications. Eng Appl Artif Intell 21(3):331–342. doi: 10.1016/j.engappai.2008.01.008 CrossRefGoogle Scholar
  125. 125.
    Chen R-S, Tu M (2009) Development of an agent-based system for manufacturing control and coordination with ontology and RFID technology. Expert Syst Appl 36(4):7581–7593. doi: 10.1016/j.eswa.2008.09.068 CrossRefGoogle Scholar
  126. 126.
    Trappey AJC, Lu T-H, Fu L-D (2009) Development of an intelligent agent system for collaborative mold production with RFID technology. Robot Comput Integr Manuf 25(1):42–56. doi: 10.1016/j.rcim.2007.06.002 CrossRefGoogle Scholar
  127. 127.
    Zhang Y, Huang GQ, Qu T, Ho O (2010) Agent-based workflow management for RFID-enabled real-time reconfigurable manufacturing. Int J Comput Integr Manuf 23(2):101–112. doi: 10.1080/09511920903440354 CrossRefGoogle Scholar
  128. 128.
    Zhang Y, Qu T, Ho OK, Huang GQ (2011) Agent-based smart gateway for RFID-enabled real-time wireless manufacturing. Int J Prod Res 49(5):1337–1352. doi: 10.1080/00207543.2010.518743 CrossRefGoogle Scholar
  129. 129.
    Mentzer JT, DeWitt W, Keebler JS, Min S, Nix NW, Smith CD, Zacharia ZG (2001) Defining supply chain management. J Bus Logist 22(2):1–25CrossRefGoogle Scholar
  130. 130.
    Kara S, Ibbotson S (2011) Embodied energy of manufacturing supply chains. CIRP J Manuf Sci Technol 4(3):317–323. doi: 10.1016/j.cirpj.2011.03.006 CrossRefGoogle Scholar
  131. 131.
    Sarac A, Absi N, Dauzère-Pérès S (2010) A literature review on the impact of RFID technologies on supply chain management. Int J Prod Econ 128(1):77–95. doi: 10.1016/j.ijpe.2010.07.039 CrossRefGoogle Scholar
  132. 132.
    Chow H, Choy K, Lee W, Lau K (2006) Design of a RFID case-based resource management system for warehouse operations. Expert Syst Appl 30(4):561–576. doi: 10.1016/j.eswa.2005.07.023 CrossRefGoogle Scholar
  133. 133.
    Poon TC, Choy KL, Chow HKH, Lau HCW, Chan FTS, Ho KC (2009) A RFID case-based logistics resource management system for managing order-picking operations in warehouses. Expert Syst Appl 36(4):8277–8301. doi: 10.1016/j.eswa.2008.10.011 CrossRefGoogle Scholar
  134. 134.
    Yang Z, Zhang P, Chen L (2016) RFID-enabled indoor positioning method for a real-time manufacturing execution system using OS-ELM. Neurocomputing 174:121–133. doi: 10.1016/j.neucom.2015.05.120 CrossRefGoogle Scholar
  135. 135.
    Lim MK, Bahr W, Leung SC (2013) Rfid in the warehouse: a literature analysis (1995–2010) of its applications, benefits, challenges and future trends. Int J Prod Econ 145(1):409–430CrossRefGoogle Scholar
  136. 136.
    Klumpp M, Noche B, Kandel C, Hohmeier T (2012) Dynamic scheduling for logistics service providers. Coordinated Autonomous Systems, Hamburg, pp 124–144Google Scholar
  137. 137.
    Kandel C, Klumpp M, Keusgen T GPS based track and trace for transparent and sustainable global supply chains. In: 17th International Conference on Concurrent Enterprising (ICE), 2011 2011. IEEE, pp 1–8Google Scholar
  138. 138.
    He W, Tan EL, Lee EW, Li T A solution for integrated track and trace in supply chain based on RFID & GPS. In: IEEE Conference on Emerging Technologies & Factory Automation, 2009. ETFA 2009., 2009. IEEE, pp 1–6Google Scholar
  139. 139.
    Hanebeck H-CL, Tracey B (2003) The role of location in supply chain management: how mobile communication enables supply chain best practice and allows companies to move to the next level. Int J Mob Commun 1(1):148–166CrossRefGoogle Scholar
  140. 140.
    Ergen E, Akinci B, Sacks R (2007) Tracking and locating components in a precast storage yard utilizing radio frequency identification technology and GPS. Autom Constr 16(3):354–367. doi: 10.1016/j.autcon.2006.07.004 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2017

Authors and Affiliations

  • Zude Zhou
    • 1
    • 3
  • Bitao Yao
    • 1
    • 3
  • Wenjun Xu
    • 2
    • 3
  • Lihui Wang
    • 4
  1. 1.School of Mechanical and Electronic EngineeringWuhan University of TechnologyWuhanChina
  2. 2.School of Information EngineeringWuhan University of TechnologyWuhanChina
  3. 3.Key Laboratory of Fiber Optic Sensing Technology and Information Processing (Wuhan University of Technology)Ministry of EducationWuhanChina
  4. 4.Department of Production EngineeringKTH Royal Institute of TechnologyStockholmSweden

Personalised recommendations