Advertisement

Material removal mechanism in ultrasonic-assisted grinding of Al2O3 by single-grain scratch test

  • Heike Kitzig-FrankEmail author
  • Taghi Tawakoli
  • Bahman Azarhoushang
ORIGINAL ARTICLE

Abstract

Alumina is an advanced ceramic that is frequently used in high-performance applications. Grinding of alumina is usually associated with micro-cracks and deteriorated surface quality. Ultrasonic-assisted grinding has been introduced in several applications as a promising method to overcome these constraints. In order to get a deeper knowledge of the characteristics of material removal mechanisms in alumina during grinding with ultrasonic stimulation of the workpiece, single-grain scratch tests were performed and the theoretical and experimental kinematics of grain-workpiece engagement were investigated. It was shown that in the real contact conditions, interrupted contact conditions happen, which is analogous to the theoretical model. The measured workpiece resonance frequency and mode shape were very close to the design conditions. The investigations show that the superposition of ultrasonic vibration into the grinding process increases the material removal of each grain. This result fully correlates with the presented theoretical analysis. Additionally, it was found that the impact action of ultrasonic-assisted grinding induces chipping around the produced scratch.

Keywords

Grinding Single-grain scratch test Ultrasonic-assisted grinding Material removal mechanism Alumina Ceramics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Marinescu ID, Rowe WB, Yin L, Wobker HG (2000) Abrasive processes. In: Handbook of ceramic grinding and polishing, I. D. Marinescu, H. K. Tönshoff and I. Inasaki, Eds. Materials science and process technology series. Ceramic and other materials—processing and technology. Noyes Publications; William Andrew Pub., Park Ridge, N.J., Norwich, NYGoogle Scholar
  2. 2.
    Malkin S, Hwang TW (1996) Grinding mechanisms for ceramics. Annals of the CIRP 45(2):569–580CrossRefGoogle Scholar
  3. 3.
    Uhlmann E, Daus NA (2000) Ultraschallunterstütztes Schleifen. Einsatzvorteile durch ein innovatives Schleifverfahren; [Abschlußbericht zum Verbundprojekt Ultraschallunterstütztes Schleifen, gefördert durch das Bundesministerium für Bildung und Forschung (BMBF), Förderkennzeichen 02PV19030, betreut durch die Projektträgerschaft Produktion und Fertigungstechnologien (PFT), Forschungszentrum Karlsruhe]. Technische Universität, BerlinGoogle Scholar
  4. 4.
    König W, Klocke F (1996) Fertigungsverfahren. Bd. 2: Schleifen, Honen, Läppen. VDI Verlag, DüsseldorfGoogle Scholar
  5. 5.
    Saljé E, Harbs U (1990) Wirkungsweisen und Anwendungen von Konditionierverfahren. CIRP Ann Manuf Technol 39(1):337–340CrossRefGoogle Scholar
  6. 6.
    Marshall DB, Evans AG, Yakub BTK, Tien JW, Kino GS (1983) The nature of machining damage in brittle materials. Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences 385(1789):461–475CrossRefGoogle Scholar
  7. 7.
    IZTK Informationszentrum Technische Keramik (2003) Brevier technische Keramik. Fahner, LaufGoogle Scholar
  8. 8.
    Bifano TG (1988) Ductile-regime grinding of brittle materials, North Carolina State UniversityGoogle Scholar
  9. 9.
    Bifano TG, Dow TA, Scattergood RO (1991) Ductile-regime grinding: a new technology for machining brittle materials. J Eng for Industry 113(2):184CrossRefGoogle Scholar
  10. 10.
    Zhang B, Tokura H, Yoshikawa M (1988) Study on surface cracking of alumina scratched by single-point diamonds. J Mater Sci 23(9):3214–3224CrossRefGoogle Scholar
  11. 11.
    Lawn BR, Fuller ER (1975) Equilibrium penny-like cracks in indentation fracture. J Mater Sci 10(12):2016–2024CrossRefGoogle Scholar
  12. 12.
    Lawn BR, Swain MV (1975) Microfracture beneath point indentations in brittle solids. J Mater Sci 10(1):113–122CrossRefGoogle Scholar
  13. 13.
    Wenda A (2002) Schleifen von Mikrostrukturen in sprödharten Werkstoffen. Schriftenreihe des Instituts für Werkzeugmaschinen und Fertigungstechnik der TU Braunschweig. Vulkan-Verl., EssenGoogle Scholar
  14. 14.
    Oepoez TT, Chen X (2010) An investigation of the rubbing and ploughing in single grain grinding using finite element method. 8th international conference on manufacturing research, Durham, UKGoogle Scholar
  15. 15.
    Steffes M, Aurich JC (2012) Einfluss der Kornform auf das plastische Materialverhalten beim Einkornritzen. Diamond Business 3(2012):44–50Google Scholar
  16. 16.
    Liang Z, Wang X, Wu Y, Xie L, Jiao L, Zhao W (2013) Experimental study on brittle–ductile transition in elliptical ultrasonic assisted grinding (EUAG) of monocrystal sapphire using single diamond abrasive grain. Int J Mach Tools Manuf 71:41–51CrossRefGoogle Scholar
  17. 17.
    Giwerzew A (2003) Spanbildungsmechanismen und tribologisches Prozeßverhalten beim Schleifen mit niedrigen Schnittgeschwindigkeiten Google Scholar
  18. 18.
    Zum Gahr KH, Mewes D (1983) Werkstoffabtrag beim Furchungsverschleiß. Metall 37(12):1212–1217Google Scholar
  19. 19.
    Packeisen A, Berns H (2000) Zur Bedeutung von Ritzversuchen für das Schleifen von Hartlegierungen. In Jahrbuch Schleifen, Honen, Läppen und Polieren, H. W. Hoffmeister and H. K. Tönshoff, Eds. 59Google Scholar
  20. 20.
    Cao J, Wu Y, Lu D, Fujimoto M, Nomura M (2014) Material removal behavior in ultrasonic-assisted scratching of SiC ceramics with a single diamond tool. Int J Mach Tools Manuf 79:49–61CrossRefGoogle Scholar
  21. 21.
    Wang Q, Liang Z, Wang X et al (2016) Investigation on surface formation mechanism in elliptical ultrasonic assisted grinding (EUAG) of monocrystal sapphire based on fractal analysis method. Int J Adv Manuf Technol 87:29–33. doi: 10.1007/s00170-016-8700-7
  22. 22.
    Marinescu ID, Hitchiner M, Uhlmann E, Rowe WB, Inasaki I (2007) Handbook of machining with grinding wheels. CRC / Taylor & Francis Group, LLC, Boca Raton, FLGoogle Scholar
  23. 23.
    Sun HQ, Irwan R, Huang H, Stachowiak GW (2010) Surface characteristics and removal mechanism of cemented tungsten carbides in nanoscratching. Wear 268(11–12):1400–1408CrossRefGoogle Scholar
  24. 24.
    Spur G, Holl S-E (1996) Ultrasonic assisted grinding of ceramics. J Mater Process Technol 62(4):287–293CrossRefGoogle Scholar
  25. 25.
    Azarhoushang B, Tawakoli T (2011) Development of a novel ultrasonic unit for grinding of ceramic matrix composites. Int J Adv Manuf Technol 57(9–12):945–955CrossRefGoogle Scholar
  26. 26.
    Azarhoushang B (2011) Intermittent grinding of ceramic matrix composites. Unterbrochenes Schleifen von keramischen Faserverbundwerkstoffen. Forschungsberichte des Instituts für Fertigungstechnologie keramischer Bauteile (IFKB). Shaker, AachenGoogle Scholar
  27. 27.
    Tawakoli T, Azarhoushang B (2012) Entwicklungen im ultraschallunterstützten Schleifen für Keramik- und Metallwerkstoffe. Vortragsband zum 9. Seminar Moderne Schleiftechnologie und Feinstbearbeitung, Stuttgart, 15.05.2012, Vulkan-Verlag, 4b 1–4b 13Google Scholar
  28. 28.
    Tawakoli T, Akbari J, Zahedi A (2013) Ultrasonic-assisted cylindrical grinding of alumina zirconia ceramics. In: Proceedings of the ASME 2013 international mechanical engineering congress and exposition (IMECE2013), 15–21 November 2013Google Scholar
  29. 29.
    Spur G, Holl SE (1997) Ultraschallunterstütztes Schleifen von Hochleistungskeramiken. In Deutsche Keramische Gesellschaft (Jahrestagung):33–35Google Scholar
  30. 30.
    Uhlmann E, Spur G (1998) Surface formation in creep feed grinding of advanced ceramics with and without ultrasonic assistance. CIRP Ann Manuf Technol 47(1):249–252CrossRefGoogle Scholar
  31. 31.
    Zhao B, Wu Y, Liu CS, Gao AH, Zhu XS (2006) The study on ductile removal mechanisms of ultrasonic vibration grinding nano-ZrO2 ceramics. Key Eng Mater 304–305:171–175. doi: 10.4028/www.scientific.net/KEM
  32. 32.
    Akbari J, Borzoie H, Mamduhi MH (2008) Study on ultrasonic vibration effects on grinding process of alumina ceramic (Al2O3). International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering 2(5):722–726Google Scholar
  33. 33.
    Yanyan Y, Bo Z, Junli L (2009) Ultraprecision surface finishing of nano-ZrO2 ceramics using two-dimensional ultrasonic assisted grinding. Int J Adv Manuf Technol 43(5–6):462–467CrossRefGoogle Scholar
  34. 34.
    Ghahramani M, Movahhedy MR, Akbari J (2012) Ultrasonic-assisted grinding of Ti6Al4V alloy. Procedia CIRP 1:353–358CrossRefGoogle Scholar
  35. 35.
    Tawakoli T, Azarhoushang B (2008) Influence of ultrasonic vibrations on dry grinding of soft steel. Int J Mach Tools Manuf 14:1585–1591CrossRefGoogle Scholar
  36. 36.
    Uhlmann E (1994) Tiefschleifen hochfester keramischer Werkstoffe. Band 129 von Produktionstechnik - Berlin. Hanser VerlagGoogle Scholar
  37. 37.
    Panin AV, Klimenov VA, Pochivalov Y, Son AA, Kazachenok MS (2004) The effect of ultrasonic treatment on mechanical behavior of titanium and steel specimens. Theor Appl Fract Mech 41(1–3):163–172CrossRefGoogle Scholar
  38. 38.
    Nerubai MS (1987) Effect of ultrasonic vibrations on the mechanical properties of difficult-to-deform materials. Met Sci Heat Treat 29(4):254–258CrossRefGoogle Scholar
  39. 39.
    Zeppenfeld C (2005) Schnellhubschleifen von gamma-Titanalumiden Berichte aus der Produktionstechnik Bd. 2005,10. Shaker, AachenGoogle Scholar
  40. 40.
    Shaw MC (1996) Principles of abrasive processing. Oxford science publications 13. Clarendon Press; Oxford University Press, Oxford, New YorkGoogle Scholar
  41. 41.
    Tawakoli T, Azarhoushang B, Rabiey M (2009) Ultrasonic assisted dry grinding of 42CrMo4. Int J Mach Tools Manuf 42(9–10):883–891CrossRefGoogle Scholar
  42. 42.
    Zhou M, Wang XJ, Ngoi B, Gan J (2002) Brittle–ductile transition in the diamond cutting of glasses with the aid of ultrasonic vibration. J Mater Process Technol 121(2–3):243–251CrossRefGoogle Scholar
  43. 43.
    Tawakoli T, Rasifard A, Azarhoushang B (2011) New developments in ultrasonic-assisted grinding and dressing. In: 4th International Multi-Conference on Engineering and Technological Innovation (IMETI 2011), Orlando, 19–22 July 2011 ,pp 210–214Google Scholar
  44. 44.
    Marshall DB, Lawn BR (1979) Residual stress effects in sharp contact cracking. Part 2 strength degradation. J Mater Sci 14(14):2225–2235CrossRefGoogle Scholar
  45. 45.
    Marshall DB, Lawn BR (1979) Residual stress effects in sharp contact cracking. Part 1 indentation fracture mechanics. J Mater Sci 14(8):2001–2012CrossRefGoogle Scholar
  46. 46.
    Lawn BR, Evans AG, Marshall DB (1980) Elastic/plastic indentation damage in ceramics. The median/radial crack system. J American Ceramic Society 63:574–581. doi: 10.1111/j.1151-2916.1980.tb10768.x
  47. 47.
    Evans AG, Wilshaw R (1976) Quasi-plastic solid particle damage in brittle materials. Acta Metall 24(1976):939–956CrossRefGoogle Scholar
  48. 48.
    Lawn B, Wilshaw R (1975) Indentation fracture: principles and applications. J Mater Sci 10(6):1049–1081CrossRefGoogle Scholar
  49. 49.
    Hockey BJ, Lawn BR (1975) Electron microscopy of microcracking about indentations in aluminium oxide and silicon carbide. J Mater Sci 10(8):1275–1284CrossRefGoogle Scholar
  50. 50.
    Malkin S, Ritter JE (1989) Grinding mechanisms and strength degradation for ceramics. J. Eng. for Industry 111(2):167–173CrossRefGoogle Scholar
  51. 51.
    Cook RF, Pharr GM (1990) Direct observation and analysis of indentation cracking in glasses and ceramics. J American Ceramic Society 73(4):787–817CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2017

Authors and Affiliations

  • Heike Kitzig-Frank
    • 1
    Email author
  • Taghi Tawakoli
    • 1
  • Bahman Azarhoushang
    • 1
  1. 1.Institute of Precision Machining (KSF)Hochschule Furtwangen UniversityFurtwangen im SchwarzwaldGermany

Personalised recommendations