Advertisement

Probabilistic approach for predicting fatigue life improvement of cracked structure repaired by high interference fit bushing

  • A. Bahloul
  • A. Ben Ahmed
  • M. M. Mhala
  • C. H. Bouraoui
ORIGINAL ARTICLE

Abstract

The purpose of this paper consists in developing a probabilistic approach for predicting fatigue life improvement of 7075-T6 cracked Single Edge Notch Tension (SENT) specimen repaired by high interference fit bushing. The developed approach is carried out by coupling FE-analysis and Monte Carlo reliability method. In this context, a 2D- finite element analysis of the cracked SENT specimen using ABAQUS commercial software is established to: (i) simulate the interference fit process and (ii) to predict the fatigue life improvement after repair. The non-linear isotropic/kinematic hardening model embedded in ABAQUS is used to characterize the material behavior. Different stress levels, different interference fit sizes and different expanded hole diameters are investigated. As a result, crack arrest hole diameter equals to 6 mm with larger interference fit size (IFS = 0.2 mm) provides higher beneficial compressive residual stress distribution and higher fatigue life improvement than drilling hole near the crack tip. The iso-probabilistic S-N curves and the Reliability-Life curves after repair can be determined for different interference fit sizes and different expanded hole diameters. This probabilistic approach can be used with the interference fit process as an interesting and practical tool to ensure an optimal maintenance planning for cracked structures and to improve the fatigue lives of these cracked components that cannot be replaced as soon as the cracks are observed, especially in the aeronautical filed.

Keywords

Residual stress Finite element analysis Interference fit process Monte Carlo simulation Life prediction Probability density function PDF P-S-N curves 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eltaief M, Chateauneuf A, Bouraoui C, Hassine T (2015) Dynamic approach for optimal inspection planning of fatigue cracked components. J Constr Steel Res 115:263–275CrossRefGoogle Scholar
  2. 2.
    Domazet Z (1996) Comparaison of fatigue crack retardation methods. Eng Fail Anal 3:137–147CrossRefGoogle Scholar
  3. 3.
    Ayatollahi MR, Hashemi R (2007) Mixed mode fracture in an inclined center crack repaired by the composite patching. Composite Structure 81:264–273CrossRefGoogle Scholar
  4. 4.
    Song PS, Sheu GL (2002) Retardation of fatigue crack propagation by indentation technique. Int J Pres Ves 79:725–733CrossRefGoogle Scholar
  5. 5.
    Ruzek K, Pavlas J, Doubrava R (2012) Application of indentation as retardation mechanism for fatigue crack growth. Int J Fatigue 37:92–99CrossRefGoogle Scholar
  6. 6.
    Ghfiri R, Amrouche A, Imad A, Mesmacque G (2000) Fatigue life estimation after crack repair in 6005 AT-6 aluminium alloy using the cold expansion hole technique. Fatigue & Fracture of Engineering Materials & Structures 23:911–916CrossRefGoogle Scholar
  7. 7.
    Ayatollahi MR, Razavi SMJ, Yahya MY (2015) Mixed mode fatigue crack initiation and growth in a CT specimen repaired by stop hole technique. Eng Fract Mech 145:115–127CrossRefGoogle Scholar
  8. 8.
    Ayatollahi MR, Ravazi SMJ, Chamani HR (2014) A numerical study on the effect of symmetric crack flank holes on fatigue life extension of a SENT specimen. Fatigue & Fracture of Engineering Materials & Structures 37:1153–1164CrossRefGoogle Scholar
  9. 9.
    Fanni M, Fouda N, Shabara MAN, Awad M (2015) New crack stop hole shape using structural optimizing technique. Ain Shams Engineering Journal 3:987–999CrossRefGoogle Scholar
  10. 10.
    Carlson RL, Kardomateas GA, Bates PR (1991) The effects of overloads in fatigue crack growth. Int J Fatigue 13:453–460CrossRefGoogle Scholar
  11. 11.
    Murdani A, Makabe C, Saimoto A, Kondou R (2008) A crack-growth arresting technique in aluminum alloy. Eng Fail Anal 15:302–310CrossRefGoogle Scholar
  12. 12.
    Makabe C, Murdani A, Kuniyoshi K, Irei Y, Saimoto A (2009) Crack-growth arrest by redirecting crack growth by drilling stop holes and inserting pins into them. Eng Fail Anal 16:475–483CrossRefGoogle Scholar
  13. 13.
    Razavi SMJ, Ayatollahi MR, Sommitsch C, Moser C (2016) Retardation of fatigue crack growth in high strength steel S690 using a modified stop-hole technique, Engineering Fracture MechanicsGoogle Scholar
  14. 14.
    Willenberg J, Engle RM, Wood HA (1971) A crack growth retardation model using an effective stress concept. AFFDL-TM-71-1-FBRGoogle Scholar
  15. 15.
    Wheeler OE (1972) Spectrum loading and crack growth. J Basic Eng, Trans ASME 94:181–186CrossRefGoogle Scholar
  16. 16.
    Yuen BKC, Taheri F (2006) Proposed modifications to the wheeler retardation model for multiple overloading fatigue life prediction. Int J Fatigue 28:1803–1819CrossRefGoogle Scholar
  17. 17.
    Kim JK, Shim DS (2003) A statistical approach for predicting the crack retardation due to a single tensile overload. Int J Fatigue 25:335–342CrossRefGoogle Scholar
  18. 18.
    Shin C, Wang CM, Song PS (1996) Fatigue damage repair: a comparison of some possible methods. Int. J. Fatigue 18:535–546CrossRefGoogle Scholar
  19. 19.
    Buxbaum O, Huth H (1987) Expansion of cracked fastener holes as a measure for extension of lifetime to repair. Eng Fract Mech 28:689–698CrossRefGoogle Scholar
  20. 20.
    Phillips JL (1974) Sleeve cold working fastener holes, Air Force Materials Laboratory Report, AFML-TR-74-10, vol. 1Google Scholar
  21. 21.
    Landy MA, Champoux RL (1984) FTI engineering process specification FTI 8101B–cold expansion of fastener and other holes using the split sleeve system(CX) and countersink cold expansion Nosecap (CCX). Fatigue Technology Inc, SeattleGoogle Scholar
  22. 22.
    Reid L. (1993) Split sleeve cold expansion as a rework process for previously cold expanded holes. ICAV’93 Internatioanl Committee on Aeronautical Fatigue, StockholmGoogle Scholar
  23. 23.
    Ayatollahi MR, Arian NM (2009) Edge distance effects on residual stress distribution around a cold expanded hole in Al 2024 alloy. Comput Mater Sci 45:1134–1141CrossRefGoogle Scholar
  24. 24.
    Chakherlou TN, Mirzajanzadeh M, Abazadeh B, Saeedi K (2010) An investigation about interference fit effect on improving fatigue life of a holed single plate in joints. European Journal of Mechanics A/Solids 29:675–682CrossRefGoogle Scholar
  25. 25.
    Chakherlou TN, Aghdam AB (2008) An experimental investigation on the effect of short time exposure to elevated temperature on fatigue life of cold expanded fastener holes. Mater Des 29:1504–1511CrossRefGoogle Scholar
  26. 26.
    Jun L, Henggui W, Jinjie Y, Zhufeng Y (2013) Effect of edge distance on residual stresses induced by cold expansion and fatigue life of TC4 plates. Engineerining Fracture Mechanics 109:130–137CrossRefGoogle Scholar
  27. 27.
    Anil Kumar S, Bhattacharya A, Mahendra Babu NC (2014) Fatigue growth life prediction around cold expanded hole using finite element method. Procedia Materials science 5:316–325CrossRefGoogle Scholar
  28. 28.
    Reid L (2014) Repairing and preserving bridge and steel structure using an innovative crack arrest repair system. Adv Mater Res 891-892:1217–1222CrossRefGoogle Scholar
  29. 29.
    Morrow J (1968) Fatigue design handbook. In: Advances in Enginnering, vol. 4. Society of automative Engineers, PhiladelphiaGoogle Scholar
  30. 30.
    Fatemi A, Socie (1988). A critical plane approach to multiaxial fatigue damage including out-of-phase loading. Fatigue Fract Eng Mater Struct 11(3):149–165Google Scholar
  31. 31.
    Wang CH, Brown MW (1993) A path-independent parameter for fatigue under proportional and non-proportional loading. Fatigue Fract Engng Mater Struct 16(12):1285–1298CrossRefGoogle Scholar
  32. 32.
    Smith KN, Watson P, Topper TH (1970) A stress-strain function for the fatigue of metals. J Mater 15:767–778Google Scholar
  33. 33.
    Ying S, Weiping H, Fei SH, Qingchun M, Yuanming X (2016) Numerical simulations of the fatigue damage evolution at a fastener hole treated by cold expansion or with interference fit pin. Int J Mech Sci 107:188–200CrossRefGoogle Scholar
  34. 34.
    Bouraoui C, Ben Sghaier R, Fathallah R (2009) An engineering predictive design approach of high cycle fatigue reliability of shotpeened metallic parts. Mater Des 30:475–486CrossRefGoogle Scholar
  35. 35.
    Nasr A, Bouraoui C, Fathallah R, Nadot Y (2009) Probabilistic high cycle fatigue behaviour of nodular cast iron containing casting defects. Fatigue & Fracture of Engineering Materials & Structures 32:292–309CrossRefGoogle Scholar
  36. 36.
    He W, Liu J, Xie D (2015) Probabilistic life assessment on fatigue crack growth in mixed-mode by coupling of kriging model and finite element analysis. Eng Fract Mech 139:56–77CrossRefGoogle Scholar
  37. 37.
    Sanches RF, de Jesus AMP, Correia JAFO, da Silva ALL, Fernandes AA (2015) A probabilistic fatigue approach for riveted joints using Monte Carlo simulation. J Constr Steel Res 110:149–162CrossRefGoogle Scholar
  38. 38.
    Zhao YG, Ono T (2001) Moment methods for structural reliability. Struct Safety 23(1):47–75CrossRefGoogle Scholar
  39. 39.
    Ditlevsen O, Madsen HO (1996) Structural reliability methods. Wiley, New YorkGoogle Scholar
  40. 40.
    Lemaitre J, Desmorat R (2005) Engineering damage mechanics: ductile, creep, fatigue and brittle failures berlinGoogle Scholar
  41. 41.
    Lemaitre J, Chaboche, JL (2002). Mécanique des matériaux solides. Dunod (Edition 2), ParisGoogle Scholar
  42. 42.
    ABAQUS Theory Manual (2011) Version 6.10. Hibbitt, Karlsson and Sorensen Inc, USAGoogle Scholar
  43. 43.
    Naderi M, Hoseini SH, Khonsari MM (2013) Probabilistic simulation of fatigue damage and life scatter of metallic components. Int J Plast 43:101–115CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  • A. Bahloul
    • 1
  • A. Ben Ahmed
    • 1
  • M. M. Mhala
    • 1
  • C. H. Bouraoui
    • 1
  1. 1.Laboratoire de Mécanique de Sousse, Ecole Nationale d’Ingénieurs de SousseUniversité de SousseSousseTunisia

Personalised recommendations