Comparative study of hybrid laser–MIG leading configuration on porosity in aluminum alloy bead-on-plate welding

  • Haibin Miao
  • Gang Yu
  • Xiuli He
  • Shaoxia Li
  • Xuyang Chen


Laser–metal inert gas (MIG) welding is a promising welding technology, which presents many attractive properties. However, porosity still remains a serious problem in laser–MIG welding of aluminum. In this experimental study, the effect of leading configuration on porosity formation and distribution in laser–MIG bead-on-plate welding of A7N01 alloy was investigated. Experiments on arc current, welding speed, and arc configuration were performed comparatively for two leading configurations, respectively. The welds were analyzed with X-ray photographs and cross-section observations. Pores in laser–MIG-welded samples were mainly keyhole-induced. The concept of porosity area fraction was used to evaluate the severity of pore defect. The maximum porosity area fraction presented at different arc currents in the two leading configurations (in laser leading welding, it is 150 A, while in arc leading welding, it is 110 A). With welding speed increasing, porosity area fraction decreased. Bubble escape condition was deduced and used to discuss the probable mechanism of the effect of leading configuration on pore formation. The results showed that leading configuration was considerable in porosity minimization and prevention.


Laser–MIG hybrid welding A7N01 aluminum alloy Leading configuration Porosity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Steen WM, Eboo M (1979) Arc augmented laser-welding. Met Constr-Brit Weld 11(7):332–336Google Scholar
  2. 2.
    Le Guen E, Fabbro R, Carin M, Coste F, Le Masson P (2011) Analysis of hybrid Nd:Yag laser-MAG arc welding processes. Optics & Laser Technology 43(7):1155–1166. doi: 10.1016/j.optlastec.2011.03.002 CrossRefzbMATHGoogle Scholar
  3. 3.
    Wang J, Wang GZ, Wang CM (2015) Mechanisms of the porosity formation during the fiber laser lap welding of aluminium alloy. Metalurgija 54(4):683–686Google Scholar
  4. 4.
    Casalino G, Mortello M, Leo P, Benyounis KY, Olabi AG (2014) Study on arc and laser powers in the hybrid welding of AA5754 Al-alloy. Mater Design 61:191–198. doi: 10.1016/j.matdes.2014.04.060 CrossRefGoogle Scholar
  5. 5.
    Ola OT, Doern FE (2015) Keyhole-induced porosity in laser-arc hybrid welded aluminum. Int J Adv Manuf Tech 80(1–4):3–10. doi: 10.1007/s00170-015-6987-4 CrossRefGoogle Scholar
  6. 6.
    Campana G, Ascari A, Fortunato A, Tani G (2009) Hybrid laser-MIG welding of aluminum alloys: the influence of shielding gases. Appl Surf Sci 255(10):5588–5590. doi: 10.1016/j.apsusc.2008.07.169 CrossRefGoogle Scholar
  7. 7.
    Katayama S, Uchiumi S, Mizutani M, Wang J, Fujii K (2007) Penetration and porosity prevention mechanism in YAG laser-MIG hybrid welding. Weld Int 21(1):25–31. doi: 10.1533/wint.2007.3680 CrossRefGoogle Scholar
  8. 8.
    Wang QY, Chen H, Zhu ZT, Qiu PX, Cui YL (2016) A characterization of microstructure and mechanical properties of A6N01S-T5 aluminum alloy hybrid fiber laser-MIG welded joint. Int J Adv Manuf Tech 86(5–8):1375–1384Google Scholar
  9. 9.
    Liu S, Li JM, Mi GY, Wang CM, Hu XY (2016) Study on laser-MIG hybrid welding characteristics of A7N01-T6 aluminum alloy. Int J Adv Manuf Tech 87(1–4):1135–1144CrossRefGoogle Scholar
  10. 10.
    Katayama S, Uchiumi S, Briand F (2006) Production of sound deep-penetration hybrid weld in aluminum alloy with YAG laser and MIG arc. Proceedings of the 22nd ICALEO, 953–959Google Scholar
  11. 11.
    Leo P, Renna G, Casalino G, Olabi AG (2015) Effect of power distribution on the weld quality during hybrid laser welding of an Al-Mg alloy. Opt Laser Technol 73:118–126CrossRefGoogle Scholar
  12. 12.
    Kah P, Salminen A, Martikainen J (2010) The effect of the relative location of laser beam with arc in different hybrid welding processes. Mechanika 3:68–74Google Scholar
  13. 13.
    Zhao L, Sugino T, Arakane G, Tsukamoto S (2009) Influence of welding parameters on distribution of wire feeding elements in CO2 laser GMA hybrid welding. Sci Technol Weld Joi 14(5):457–467. doi: 10.1179/136217109x434252 CrossRefGoogle Scholar
  14. 14.
    Casalino G, Campanelli SL, Dal Maso U, Ludovico AD (2013) Arc leading versus laser leading in the hybrid welding of aluminium alloy using a fiber laser. Procedia CIRP 12:151–156. doi: 10.1016/j.procir.2013.09.027 CrossRefGoogle Scholar
  15. 15.
    Katayama S, Mizutani M (2003) Elucidation of laser welding phenomena and porosity formation mechanism (physics, processes, instruments & measurements, international symposium of JWRI 30th anniversary). Trans JWRI 32:67–69Google Scholar
  16. 16.
    Haboudou A, Peyre P, Vannes AB (2004) Influence of surface preparation and process parameters on the porosity generation in aluminum alloys. J Laser Appl 16(1):20–24. doi: 10.2351/1.1619995 CrossRefGoogle Scholar
  17. 17.
    AlShaer AW, Li L, Mistry A (2014) The effects of short pulse laser surface cleaning on porosity formation and reduction in laser welding of aluminium alloy for automotive component manufacture. Opt Laser Technol 64:162–171. doi: 10.1016/j.optlastec.2014.05.010 CrossRefGoogle Scholar
  18. 18.
    Yao W, Gong SL (2011) Porosity formation mechanisms and controlling technique for laser penetration welding. Adv Mater Res-Switz 287-290:2191–2194. doi: 10.4028/ CrossRefGoogle Scholar
  19. 19.
    Zhao H, White DR, DebRoy T (1999) Current issues and problems in laser welding of automotive aluminium alloys. Int Mater Rev 44(6):238–266. doi: 10.1179/095066099101528298 CrossRefGoogle Scholar
  20. 20.
    Pang SY, Chen X, Zhou JX, Shao XY, Wang CM (2015) 3D transient multiphase model for keyhole, vapor plume, and weld pool dynamics in laser welding including the ambient pressure effect. Opt Laser Eng 74:47–58. doi: 10.1016/j.optlaseng.2015.05.003 CrossRefGoogle Scholar
  21. 21.
    You DY, Gao XD, Katayama S (2015) Detection of imperfection formation in disk laser welding using multiple on-line measurements. J Mater Process Tech 219:209–220. doi: 10.1016/j.jmatprotec.2014.12.025 CrossRefGoogle Scholar
  22. 22.
    Wei PS, Wu JH, Chao TC, Chen LJ (2014) Keyhole collapse during high intensity beam drilling. Int J Heat Mass Tran 79:300–308. doi: 10.1016/j.ijheatmasstransfer.2014.07.070 CrossRefGoogle Scholar
  23. 23.
    Gatzen M, Thomy C, Vollertsen F (2012) Analytical investigation of the influence of the spatial laser beam intensity distribution on keyhole dynamics in laser beam welding. Laser Eng 23(1–2):109–122Google Scholar
  24. 24.
    Zhou J, Tsai HL (2007) Effects of electromagnetic force on melt flow and porosity prevention in pulsed laser keyhole welding. Int J Heat Mass Tran 50(11–12):2217–2235. doi: 10.1016/j.ijheatmasstransfer.2006.10.040 CrossRefzbMATHGoogle Scholar
  25. 25.
    Haboudou A, Peyre P, Vannes AB, Peix G (2003) Reduction of porosity content generated during Nd:YAG laser welding of A356 and AA5083 aluminium alloys. Mat Sci Eng a-Struct 363(1–2):40–52. doi: 10.1016/S0921-5093(03)00637-3 CrossRefGoogle Scholar
  26. 26.
    El-Batahgy A, Kutsuna M (2009) Laser beam welding of AA5052, AA5083, and AA6061 aluminum alloys. Adv Mater Sci Eng . doi: 10.1155/2009/974182Artn 974182Google Scholar
  27. 27.
    Lisiecki A, Burdzik R, Siwiec G, Konieczny L, Warczek J, Folega P, Oleksiak B (2015) Disk laser welding of car body zinc coated steel sheets. Arch Metall Mater 60(4):2913–2922. doi: 10.1515/amm-2015-0465 Google Scholar
  28. 28.
    Ahsan MRU, Kim YR, Kim CH, Kim JW, Ashiri R, Park YD (2016) Porosity formation mechanisms in cold metal transfer (CMT) gas metal arc welding (GMAW) of zinc coated steels. Sci Technol Weld Joi 21(3):209–215. doi: 10.1179/1362171815y.0000000084 CrossRefGoogle Scholar
  29. 29.
    Chang B, Allen C, Blackburn J, Hilton P (2013) Thermal and fluid flow characteristics and their relationships with porosity in laser welding of AA5083. Physcs Proc 41:471–480. doi: 10.1016/j.phpro.2013.03.104 Google Scholar
  30. 30.
    Mohandas T, Banerjee D, Rao VVK (1999) Fusion zone microstructure and porosity in electron beam welds of an alpha plus beta titanium alloy. Metall Mater Trans A 30(3):789–798. doi: 10.1007/s11661-999-0071-3 CrossRefGoogle Scholar
  31. 31.
    Gao M, Zeng XY, Hu QW, Yan J (2008) Weld microstructure and shape of laser-arc hybrid welding. Sci Technol Weld Joi 13(2):106–113. doi: 10.1179/174329307x249388 CrossRefGoogle Scholar
  32. 32.
    Zhang KZ, Lei ZL, Chen YB, Liu M, Liu Y (2015) Microstructure characteristics and mechanical properties of laser-TIG hybrid welded dissimilar joints of Ti-22Al-27Nb and TA15. Opt Laser Technol 73:139–145. doi: 10.1016/j.optlastec.2015.04.028 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2017

Authors and Affiliations

  • Haibin Miao
    • 1
    • 2
  • Gang Yu
    • 1
    • 2
  • Xiuli He
    • 1
    • 2
  • Shaoxia Li
    • 1
    • 2
  • Xuyang Chen
    • 1
    • 2
  1. 1.Key Laboratory of Mechanics in Advanced Manufacturing, Institute of MechanicsChinese Academy of SciencesBeijingChina
  2. 2.School of Engineering ScienceUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations