Advertisement

Hole-making processes and their impacts on the microstructure and fatigue response of aircraft alloys

  • Dan SunEmail author
  • Patrick Lemoine
  • Daniel Keys
  • Patrick Doyle
  • Savko Malinov
  • Qing Zhao
  • Xuda Qin
  • Yan Jin
Open Access
ORIGINAL ARTICLE

Abstract

A comparative study on conventional drilling and helical milling has been reported under the context of aircraft alloy hole making. The impacts of these two different machining processes on the microstructures and the fatigue performance of different aircraft alloys have been elaborated. Results show that both alloys undergo more severe surface/subsurface plastic deformation under conventional drilling comparing to helical milling process. Helical milling leads to a longer coupon fatigue life compared to conventional drilling for both alloys. The fatigue life of Al 2024-T3 is significantly longer than that of Ti-6Al-4V under all machining conditions. The use of coolant generally produces less damaged surface and leads to enhanced fatigue performance of the machined alloys. In addition, the machined surface roughness has been studied to further elaborate the effects of different machining processes.

Keywords

Aircraft alloys Drilling Helical milling Fatigue 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Riley A, Aardema, B, Vosbury P, Eiff MA, Frautschy HG, Serkenburg R, Shaffer D, Wild T, Michmerhuizen T (2008) Aviation maintenance technician handbook. Department of Transportation: Federal Aviation Administration. Newcastle, WashGoogle Scholar
  2. 2.
    Zhang S, Zhao D (2012) Aerospace materials handbook. CRC PressGoogle Scholar
  3. 3.
    Iyer R, Koshy P, Ng E (2007) Helical milling: an enabling technology for hard machining precision holes in AISI D2 tool steel. Int J Mach Tools Manuf 47(2):205–210CrossRefGoogle Scholar
  4. 4.
    Gu W, Xu H, Liu J, Yue Z (2009) Effect of drilling process on fatigue life of open holes. Tsinghua Sci & Tech 14(S2):54–57CrossRefGoogle Scholar
  5. 5.
    Liu J, Xu HL, Zhai HB, Yue ZF (2010) Effect of detail design on fatigue performance of fastener hole. Mater Des 31(2):976–980CrossRefGoogle Scholar
  6. 6.
    Zhang PF, Churi NJ, Pei ZJ, Treadwell C (2008) Mechanical drilling processes for titanium alloys: a literature review. Mach Sci Technol 12(4):417–444CrossRefGoogle Scholar
  7. 7.
    Latger F, Harris T, Björklund S (2002) Drilling cost model. SAE Technical Paper 2002–01-632Google Scholar
  8. 8.
    Qin XD, Sun XT, Wang Q, Chen SM, Li H (2012) Comparative study on helical milling and drilling of Ti-6Al-4 V. Key Eng Mat 499:200–204CrossRefGoogle Scholar
  9. 9.
    Sasahara H, Kawasaki M, Tsutsumi M (2008) Helical feed milling with MQL for boring of aluminum alloy. J Adv Mech Des Syst & Manuf 2(6):1030–1040CrossRefGoogle Scholar
  10. 10.
    ISO 286–2:2010. Geometrical product specifications (GPS)—ISO code system for tolerances on linear sizes—part 2: tables of standard tolerance classes and limit deviations for holes and shaftsGoogle Scholar
  11. 11.
    Li H, He G, Qin X, Wang G, Lu C, Gui L (2014) Tool wear and hole quality investigation in dry helical milling of Ti-6Al-4V alloy. Int J Adv Manuf Technol 71(5):1511–1523CrossRefGoogle Scholar
  12. 12.
    Olvera D, De Lacalle LNL, Urbikain G, Lamikiz A, Rodal P, Zamakona IH (2012) Hole making using ball helical milling on titanium alloys. Mach Sci Technol 16(2):173–188CrossRefGoogle Scholar
  13. 13.
    Sun J, Guo YB (2009) A comprehensive experimental study on surface integrity by end milling Ti-6Al-4V. J Mater Process Technol 209(8):4036–4042CrossRefGoogle Scholar
  14. 14.
    Che-Haron CH, Jawaid A (2005) The effect of machining on surface integrity of titanium alloy Ti-6% Al-4% V. J Mater Process Technol 166(2):188–192CrossRefGoogle Scholar
  15. 15.
    Che-Haron CH (2001) Tool life and surface integrity in turning titanium alloy. J Mater Process Technol 118(1–3):231–237CrossRefGoogle Scholar
  16. 16.
    Dornfeld DA, Kim JS, Dechow H, Hewson J, Chen LJ (1999) Drilling burr formation in titanium alloy, Ti-6Al-4V. CIRP Annals – Manuf Tech 48(1):73–76CrossRefGoogle Scholar
  17. 17.
    Ji CH, Li YH, Qin XD, Zhao Q, Sun D, Jin Y (2015) 3D FEM simulation of helical milling hole process for titanium alloy Ti-6Al-4V. Int J Adv Manuf Technol 81(9):1733–1742CrossRefGoogle Scholar
  18. 18.
    Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mat Res 7(6):1564–1583CrossRefGoogle Scholar
  19. 19.
    Leyens C, Peters M (2003) Titanium and titanium alloys: fundamentals and applications. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  20. 20.
    Hughes JI, Sharman ARC, Ridgway K (2004) The effect of tool edge preparation on tool life and workpiece surface integrity. Proc Inst Mech Eng Pt B: J Eng Manuf 218(9):1113–1123CrossRefGoogle Scholar
  21. 21.
    Reissig L, Völkl R, Mills MJ, Glatzel U (2004) Investigation of near surface structure in order to determine process-temperatures during different machining processes of Ti6Al4V. Scr Mater 50(1):121–126CrossRefGoogle Scholar
  22. 22.
    Pei X, Chen W, Ren B, Han Y (2002) Effect of drilling processes on surface integrity of 7075-aluminum alloy holes. J Beijing University of Aeronautics and Astronautics 28(3):319–322Google Scholar
  23. 23.
    Rey PA, LeDref J, Senatore J, Landon Y (2016) Modelling of cutting forces in orbital drilling of titanium alloy Ti–6Al–4V. Int J Machine Tools & Manufacture 106:75–88CrossRefGoogle Scholar
  24. 24.
    M'Saoubi R, Axinte D, Soo SL, Nobel C, Attia H, Kappmeyer G, Engin S, Sim WM (2015) High performance cutting of advanced aerospace alloys and composite materials. CIRP Annals-Manuf Tech 64(2):557–580CrossRefGoogle Scholar
  25. 25.
    Xu JK, Xia K, Xu Z, Zhang LS, Yu ZJ, Yu HD (2015) Study on hardness and tribological properties of highspeed wire electrical discharge machining surface. International Conference on Mechatronics and Automation, BeijingGoogle Scholar
  26. 26.
    Arooj S, Shah M, Sadiq S, Jaffery SHI, Khushnood S (2014) Effect of current in the EDM machining of aluminum 6061 T6 and its effect on the surface morphology. Arab J Sci & Eng 39(5):4187–4199CrossRefGoogle Scholar
  27. 27.
    Songmene V, Khettabi R, Zaghbani I, Kouam J, Djebara A (2011) Machining and machinability of aluminum alloys. In: Kvackaj T (ed) aluminium alloys, theory and applications. InTech. DOI:  10.5772/14888
  28. 28.
    Zhao Q, Qin X, Ji C, Li Y, Sun D, Jin Y (2015) Tool life and hole surface integrity studies for hole-making of Ti6Al4V alloy. Intl J Adv Manuf Tech 79(5):1017–1026CrossRefGoogle Scholar
  29. 29.
    Nouari M, Makich H (2014) On the physics of machining titanium alloys: interactions between cutting parameters, microstructure and tool wear. Metals 4(3):335–358CrossRefGoogle Scholar
  30. 30.
    Pan Z, Liang SY, Garmestani H, Shih DS (2016) Prediction of machining-induced phase transformation and grain growth of Ti-6Al-4 V alloy. Int J Adv Manuf Technol 87(1):859–866CrossRefGoogle Scholar
  31. 31.
    Yao CF, Tan L, Ren JX, Lin Q, Liang YS (2014) Surface integrity and fatigue behaviour for high-speed milling Ti-10V-2Fe-3Al titanium alloy. J Fail Anal Prev 14(1):102–112CrossRefGoogle Scholar
  32. 32.
    Li Y, Lee CH, Gao J (2015) From computer-aided to intelligent machining: recent advances in computer numerical control machining research. Proc IMechE Part B: J Engineering Manufacture 229(7):1087–1103CrossRefGoogle Scholar
  33. 33.
    Liu C, Li Y, Hao X (2016) An adaptive machining approach based on in-process inspection of interim machining states for large-scaled and thin-walled complex parts. Int J Adv Manuf Technol DOI. doi: 10.1007/s00170-016-9647-4 Google Scholar
  34. 34.
    Liu C, Li Y, Shen W (2014) Integrated manufacturing process planning and control based on intelligent agents and multi-dimension features. Int J Adv Manuf Technol 75(9):1457–1471CrossRefGoogle Scholar
  35. 35.
    Liu LY, Zhou X, Shen W (2015) Interim feature-based cutting parameter optimization for aircraft structural parts. Int J Adv Manuf Technol 77(1):663–676CrossRefGoogle Scholar
  36. 36.
    Li Y, Liu X, Gao J, Maropoulos P (2012) A dynamic feature information model for integrated manufacturing planning and optimization. CIRP Annals – Manuf Tech 61(1):167–170CrossRefGoogle Scholar
  37. 37.
    Liu X, Li Y, Gao J (2016) A multi-perspective dynamic feature concept in adaptive NC machining of complex freeform surfaces. Int J Adv Manuf Technol 82(5):1259–1268CrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.School of Mechanical and Aerospace EngineeringQueen’s University BelfastBelfastUK
  2. 2.The Nanotechnology and Integrated BioEngineering CentreUlster UniversityNewtownabbeyUK
  3. 3.Tianjin Key Laboratory of Equipment Design and ManufacturingTechnologyTianjin UniversityTianjin CityPeople’s Republic of China

Personalised recommendations