Tool wear and cutting forces under cryogenic machining of titanium alloy (Ti17)

  • Sabrine TrabelsiEmail author
  • Anne Morel
  • Guenael Germain
  • Zoubeir Bouaziz


Titanium alloy is well known for its difficulty to machine, owing to the important “tool wear” phenomenon. Machining assistance is an interesting solution to lengthen the tool lifetime. In this study, we focused on the effect of cryogenic assistance—during machining of Ti17—on the tool wear and cutting forces for different combinations of cutting speed, feed rate and depth of cut. Compared to conventional lubrication, cryogenic support lengthens the tool life for all tested conditions and has no significant influence on cutting force. A comparison of the cryogenic effect and high-pressure water jet assistance is also presented.


Titanium alloy Cryogenic assistance Tool wear Cutting force High pressure water jet assistance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arrazola P-J, Garay A, Iriarte L-M, Armendia M, Marya S, Maître FL (2009) MaChinability of titanium alloys (Ti6Al4V and Ti555.3). J Mater Process Technol 209:2223–30CrossRefGoogle Scholar
  2. 2.
    Venugopal KA, Paul S, Chattopadhyay AB (2007) Growth of tool wear in turning of Ti-6Al-4V alloy under cryogenic cooling. Wear 262:1071–1078CrossRefGoogle Scholar
  3. 3.
    Wang ZY, Rajurkar KP (2000) Cryogenic machining of hard-to-cut materials. Wear 239:168–175CrossRefGoogle Scholar
  4. 4.
    Dhananchezian M, Pradeep Kumar M (2011) Cryogenic turning of the Ti–6Al–4V alloy with modified cutting tool inserts. Cryogenics 51:34–40CrossRefGoogle Scholar
  5. 5.
    Shane YH, Ding Y, Woo-cheol J (2001) Friction and cutting forces in cryogenic machining of Ti–6Al–4V. Int J Mach Tools Manuf 41:2271–2285CrossRefGoogle Scholar
  6. 6.
    Bermingham MJ, Kirsch J, Sun S, Palanisamy S, Dargusch MS (2011) New observations on tool life, cutting forces and chip morphology in cryogenic machining Ti-6Al-4V. Int J Mach Tools Manuf 51:500–511CrossRefGoogle Scholar
  7. 7.
    Ayed Y, Germain G, Ammar A, Furet B (2013) Degradation modes and tool wear mechanisms in finish and rough machining of Ti17 Titanium alloy under high-pressure water jet assistance. Wear 305(12):228237Google Scholar
  8. 8.
    Klinkova O, Rech J, Drapier S, Bergheau J-M (2011) Characterization of friction properties at the workmaterial/cutting tool interface during the machining of randomly structured carbon fibers reinforced polymer with carbide tools under dry conditions. Tribol Int 44:2050–2058CrossRefGoogle Scholar
  9. 9.
    Ayed Y Approches expérimentales et numériques de l’usinage assisté jet d’eau haute pression : étude des mécanismes d’usure et contribution à la modélisation multi-physiques de la coupe-Thèse 2013-ENSAM-0056Google Scholar
  10. 10.
    Hua J, Shivpuri R (2005) Acobalt diffusion based model for predicting crater wear of carbide tools in machining titanium alloys. J Eng Mater Technol 127:136–144CrossRefGoogle Scholar
  11. 11.
    Zhang S, Li JF, Deng JX, Li YS (2009) Investigation on diffusion wear during high-speed machining Ti-6Al-4V alloy with straight tungsten carbide tools. Int J Adv Manuf Technol 44:17– 25CrossRefGoogle Scholar
  12. 12.
    Ayed Y, Germain G, Ammar A, Furet B (2015) Tool wear analysis and improvement of cutting conditions using the high-pressure water-jet assistance when machining the Ti17 titanium alloy. Precis Eng 42:294–301CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  • Sabrine Trabelsi
    • 1
    Email author
  • Anne Morel
    • 2
  • Guenael Germain
    • 2
  • Zoubeir Bouaziz
    • 1
  1. 1.National School of Engineers of Sfax, MFAPSfaxTunisia
  2. 2.Arts et Métiers ParisTech, LAMPAAngersFrance

Personalised recommendations