Micro-electrode fabrication processes for micro-EDM drilling and milling: a state-of-the-art review

ORIGINAL ARTICLE

Abstract

These days, miniaturized products have a lot of applications in biotechnology, information technology, environmental and medical industries, electric devices, miniaturized machines, and so on. Micro-electrical discharge machining (micro-EDM) is one the most efficient technologies among the nonconventional machining technologies for producing micro-components. Micro-EDM is able to machine tough die materials which cannot be machined by micro-milling. The micro-EDM method has the capability to machine electrical conductive materials with various hardness, strength, and temperature-resistant and complex shapes with accurate dimensions and fine surface roughness. Moreover, it is widely used to produce micro-scale components and structures such as micro-mold, micro-die, micro-probes, micro-tools, fuel nozzles, photo-masks, thin sheet materials, and complex 3D shapes with high accuracy. This paper presents a state-of-the-art review of micro-EDM process as well as the various kinds of micro-electrode and workpiece materials and dielectrics that have been used by previous researchers. In addition, this paper extensively describes and compares various micro-electrode and micro-tool fabrication processes in order to produce precise micro-products. This work is very helpful for the micro-EDM manufacturers and users to select suitable material, dielectric and fabrication processes in researches, and industry applications.

Keywords

Micro-EDM Micro-electrode fabrication High aspect ratio Measurement Micro-drilling Micro-milling Dielectric 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Masuzawa T, Tönshoff H (1997) Three-dimensional micromachining by machine tools. CIRP Ann-Manuf Technol 46(2):621–628CrossRefGoogle Scholar
  2. 2.
    Jahan MP, San Wong Y, Rahman M (2010) A comparative experimental investigation of deep-hole micro-EDM drilling capability for cemented carbide (WC-Co) against austenitic stainless steel (SUS 304). Int J Adv Manuf Technol 46(9–12):1145–1160CrossRefGoogle Scholar
  3. 3.
    Goda J, Mitsui K (2013) Development of an integrated apparatus of micro-EDM and micro-CMM. Measurement 46(1):552–562CrossRefGoogle Scholar
  4. 4.
    Rahman M, Asad A, Masaki T, Saleh T, Wong Y, Senthil Kumar A (2010) A multiprocess machine tool for compound micromachining. Int J Mach Tool Manu 50(4):344–356CrossRefGoogle Scholar
  5. 5.
    Asad A, Masaki T, Rahman M, Lim H, Wong Y (2007) Tool-based micro-machining. J Mater Process Technol 192:204–211CrossRefGoogle Scholar
  6. 6.
    Lim H, Wong Y, Rahman M, Edwin Lee M (2003) A study on the machining of high-aspect ratio micro-structures using micro-EDM. J Mater Process Technol 140(1):318–325CrossRefGoogle Scholar
  7. 7.
    Masuzawa T (2000) State of the art of micromachining. CIRP Ann-Manuf Technol 49(2):473–488CrossRefGoogle Scholar
  8. 8.
    Weller EJ (1984) Nontraditional machining process. Society of Manufacturing Engineers, Dearborn, MichiganGoogle Scholar
  9. 9.
    Lu Z, Yoneyama T (1999) Micro cutting in the micro lathe turning system. Int J Mach Tool Manu 39(7):1171–1183CrossRefGoogle Scholar
  10. 10.
    Rahman M, Senthil Kumar A, Prakash J (2001) Micro milling of pure copper. J Mater Process Technol 116(1):39–43CrossRefGoogle Scholar
  11. 11.
    Snoeys R, Staelens F, Dekeyser W (1986) Current trends in non-conventional material removal processes. CIRP Ann-Manuf Technol 35(2):467–480CrossRefGoogle Scholar
  12. 12.
    Matsui S, Kaito T, Fujita J, Komuro M, Kanda K, Haruyama Y (2000) Three-dimensional nanostructure fabrication by focused-ion-beam chemical vapor deposition. J Vac Sci Technol B 18(6):3181–3184CrossRefGoogle Scholar
  13. 13.
    Okuyama H, Takada H (1998) Micromachining with SR and FEL. Nucl Instr Meth Phys Res B 144(1):58–65CrossRefGoogle Scholar
  14. 14.
    Ha KH, Lee SW, Kim J, Jee WY, Chu CN (2015) Fabrication of a micro-hole array on metal foil by nanosecond pulsed laser beam machining using a cover plate. J Micromech Microeng 25(2):027001. doi:10.1088/0960-1317/25/2/027001 CrossRefGoogle Scholar
  15. 15.
    Saxena I, Ehmann K, Cao J (2015) High throughput microfabrication using laser induced plasma in saline aqueous medium. J Mater Process Technol 217:77–87. doi:10.1016/j.jmatprotec.2014.10.018 CrossRefGoogle Scholar
  16. 16.
    Utlaut M (2014) Focused ion beams for nano-machining and imaging. Nanolithography: the art of fabricating nanoelectronic and nanophotonic devices and systems, 116Google Scholar
  17. 17.
    Zhang L, Tong H, Li Y (2015) Precision machining of micro tool electrodes in micro EDM for drilling array micro holes. Precis Eng 39:100–106. doi:10.1016/j.precisioneng.2014.07.010 CrossRefGoogle Scholar
  18. 18.
    Rahman MA, Rahman M, Kumar AS, Lim H, Asad A (2006) Development of micropin fabrication process using tool based micromachining. Int J Adv Manuf Technol 27(9):939–944CrossRefGoogle Scholar
  19. 19.
    Schoth A, Förster R, Menz W (2005) Micro wire EDM for high aspect ratio 3D microstructuring of ceramics and metals. Microsyst Technol 11(4):250–253CrossRefGoogle Scholar
  20. 20.
    Yu Z, Masuzawa T, Fujino M (1998) Micro-EDM for three-dimensional cavities—development of uniform wear method. CIRP Ann-Manuf Technol 47(1):169–172CrossRefGoogle Scholar
  21. 21.
    Zhao W, Yang Y, Wang Z, Zhang Y (2004) A CAD/CAM system for micro-ED-milling of small 3D freeform cavity. J Mater Process Technol 149(1):573–578CrossRefGoogle Scholar
  22. 22.
    Zhou M, Meng X, Qin J, Chen Z, Lian X (2013) Building an EDM process model by an instrumental variable approach based on two interactive Kalman filters. Precis Eng 37(1):146–158. doi:10.1016/j.precisioneng.2012.07.011 CrossRefGoogle Scholar
  23. 23.
    Ramasawmy H, Blunt L, Rajurkar K (2005) Investigation of the relationship between the white layer thickness and 3D surface texture parameters in the die sinking EDM process. Precis Eng 29(4):479–490CrossRefGoogle Scholar
  24. 24.
    Furutani K, Shibatani K, Itoh N, Mohri N (1998) A parallel link end effector for scanning electrical discharge machining process. Precis Eng 22(3):131–140CrossRefGoogle Scholar
  25. 25.
    Kitamura T, Kunieda M, Abe K (2015) Observation of relationship between bubbles and discharge locations in EDM using transparent electrodes. Precis Eng 40:26–32. doi:10.1016/j.precisioneng.2014.09.009 CrossRefGoogle Scholar
  26. 26.
    Tong H, Li Y, Zhang L, Li B (2013) Mechanism design and process control of micro EDM for drilling spray holes of diesel injector nozzles. Precis Eng 37(1):213–221. doi:10.1016/j.precisioneng.2012.09.004 CrossRefGoogle Scholar
  27. 27.
    Furutani K, Enami T, Mohri N (1997) Three-dimensional shaping by dot-matrix electrical discharge machining. Precis Eng 21(2):65–71CrossRefGoogle Scholar
  28. 28.
    Yang X, Guo J, Chen X, Kunieda M (2011) Molecular dynamics simulation of the material removal mechanism in micro-EDM. Precis Eng 35(1):51–57. doi:10.1016/j.precisioneng.2010.09.005 CrossRefGoogle Scholar
  29. 29.
    Puhan D, Mahapatra SS, Sahu J, Das L (2013) A hybrid approach for multi-response optimization of non-conventional machining on AlSiCp MMC. Measurement 46(9):3581–3592CrossRefGoogle Scholar
  30. 30.
    Kung K-Y, Horng J-T, Chiang K-T (2009) Material removal rate and electrode wear ratio study on the powder mixed electrical discharge machining of cobalt-bonded tungsten carbide. Int J Adv Manuf Technol 40(1–2):95–104CrossRefGoogle Scholar
  31. 31.
    Liu H, Tarng Y (1997) Monitoring of the electrical discharge machining process by abductive networks. Int J Adv Manuf Technol 13(4):264–270CrossRefGoogle Scholar
  32. 32.
    Tang L, Guo Y (2014) Electrical discharge precision machining parameters optimization investigation on S-03 special stainless steel. Int J Adv Manuf Technol 70(5–8):1369–1376CrossRefGoogle Scholar
  33. 33.
    Teimouri R, Baseri H (2013) Experimental study of rotary magnetic field-assisted dry EDM with ultrasonic vibration of workpiece. Int J Adv Manuf Technol 67(5–8):1371–1384CrossRefGoogle Scholar
  34. 34.
    Hourmand M, Farahany S, Sarhan AAD, Noordin MY (2015) Investigating the electrical discharge machining (EDM) parameter effects on Al-Mg2Si metal matrix composite (MMC) for high material removal rate (MRR) and less EWR–RSM approach. Int J Adv Manuf Technol 77(5–8):831–838Google Scholar
  35. 35.
    Gopalakannan S, Senthilvelan T (2013) Application of response surface method on machining of Al–SiC nano-composites. Measurement 46(8):2705–2715CrossRefGoogle Scholar
  36. 36.
    Puertas I, Luis C, Alvarez L (2004) Analysis of the influence of EDM parameters on surface quality, MRR and EW of WC–Co. J Mater Process Technol 153:1026–1032CrossRefGoogle Scholar
  37. 37.
    Keskin Y, Halkacı HS, Kizil M (2006) An experimental study for determination of the effects of machining parameters on surface roughness in electrical discharge machining (EDM). Int J Adv Manuf Technol 28(11–12):1118–1121CrossRefGoogle Scholar
  38. 38.
    Sidhu SS, Batish A, Kumar S (2013) EDM of metal matrix composite for parameter design using lexicographic goal programming. Mater Manuf Process 28(4):495–500. doi:10.1080/10426914.2013.763958 CrossRefGoogle Scholar
  39. 39.
    Yan BH, Wang CC, Liu W, Huang FY (2000) Machining characteristics of Al2O3/6061Al composite using rotary EDM with a disklike electrode. Int J Adv Manuf Technol 16(5):322–333CrossRefGoogle Scholar
  40. 40.
    Mingbo Q, Zhidong L, Zongjun T, Wei W, Yinhui H (2013) Study of unidirectional conductivity on the electrical discharge machining of semiconductor crystals. Precis Eng 37(4):902–907. doi:10.1016/j.precisioneng.2013.05.009 CrossRefGoogle Scholar
  41. 41.
    Zhao Y, Kunieda M, Abe K (2015) Multi-discharge EDM coring of single crystal SiC ingot by electrostatic induction feeding method. Precis Eng 41:24–31. doi:10.1016/j.precisioneng.2014.12.007 CrossRefGoogle Scholar
  42. 42.
    Kunieda M, Ojima S (2000) Improvement of EDM efficiency of silicon single crystal through ohmic contact. Precis Eng 24(3):185–190CrossRefGoogle Scholar
  43. 43.
    Zhao Y, Kunieda M, Abe K (2014) Study of EDM cutting of single crystal silicon carbide. Precis Eng 38(1):92–99. doi:10.1016/j.precisioneng.2013.07.008 CrossRefGoogle Scholar
  44. 44.
    Klocke F, Zeis M, Klink A, Veselovac D (2013) Technological and economical comparison of roughing strategies via milling, sinking-EDM, wire-EDM and ECM for titanium-and nickel-based blisks. CIRP J Manuf Sci Technol 6(3):198–203CrossRefGoogle Scholar
  45. 45.
    Torres A, Puertas I, Luis C (2015) Modelling of surface finish, electrode wear and material removal rate in electrical discharge machining of hard-to-machine alloys. Precis Eng 40:33–45CrossRefGoogle Scholar
  46. 46.
    Song KY, Park MS, Chu CN (2013) Electrical discharge machining using a strip electrode. Precis Eng 37(3):738–745CrossRefGoogle Scholar
  47. 47.
    Kunieda M, Kaneko Y, Natsu W (2012) Reverse simulation of sinking EDM applicable to large curvatures. Precis Eng 36(2):238–243. doi:10.1016/j.precisioneng.2011.10.003 CrossRefGoogle Scholar
  48. 48.
    Chakraborty S, Dey V, Ghosh S (2015) A review on the use of dielectric fluids and their effects in electrical discharge machining characteristics. Precis Eng 40:1–6CrossRefGoogle Scholar
  49. 49.
    Kunieda M, Kameyama A (2010) Study on decreasing tool wear in EDM due to arc spots sliding on electrodes. Precis Eng 34(3):546–553. doi:10.1016/j.precisioneng.2010.01.009 CrossRefGoogle Scholar
  50. 50.
    Abbas NM, Kunieda M (2016) Increasing discharge energy of micro-EDM with electrostatic induction feeding method through resonance in circuit. Precis Eng 45:118–125Google Scholar
  51. 51.
    Huang SH, Huang FY, Yan BH (2005) Fracture strength analysis of micro WC-shaft manufactured by micro-electro-discharge machining. Int J Adv Manuf Technol 26(1–2):68–77CrossRefGoogle Scholar
  52. 52.
    Uhlmann E, Rosiwal S, Bayerlein K, Röhner M (2010) Influence of grain size on the wear behavior of CVD diamond coatings in micro-EDM. Int J Adv Manuf Technol 47(9–12):919–922CrossRefGoogle Scholar
  53. 53.
    Alting L, Kimura F, Hansen HN, Bissacco G (2003) Micro engineering. CIRP Ann-Manuf Technol 52(2):635–657CrossRefGoogle Scholar
  54. 54.
    Chen S, Yan B, Huang F (1999) Influence of kerosene and distilled water as dielectrics on the electric discharge machining characteristics of Ti–6A1–4 V. J Mater Process Technol 87(1):107–111CrossRefGoogle Scholar
  55. 55.
    Ho K, Newman S (2003) State of the art electrical discharge machining (EDM). Int J Mach Tool Manu 43(13):1287–1300CrossRefGoogle Scholar
  56. 56.
    Uhlmann E, Piltz S, Doll U (2005) Machining of micro/miniature dies and moulds by electrical discharge machining—recent development. J Mater Process Technol 167(2):488–493CrossRefGoogle Scholar
  57. 57.
    Unoa Y, Okada A, Okamoto Y, Yamazaki K, Risbud SH, Yamada Y (1999) High efficiency fine boring of monocrystalline silicon ingot by electrical discharge machining. Precis Eng 23(2):126–133CrossRefGoogle Scholar
  58. 58.
    Qin Y, Brockett A, Ma Y, Razali A, Zhao J, Harrison C, Pan W, Dai X, Loziak D (2010) Micro-manufacturing: research, technology outcomes and development issues. Int J Adv Manuf Technol 47(9–12):821–837CrossRefGoogle Scholar
  59. 59.
    Tsai YY, Masuzawa T (2004) An index to evaluate the wear resistance of the electrode in micro-EDM. J Mater Process Technol 149(1):304–309CrossRefGoogle Scholar
  60. 60.
    Jahan M, Rahman M, Wong Y (2011) A review on the conventional and micro-electrodischarge machining of tungsten carbide. Int J Mach Tool Manu 51(12):837–858CrossRefGoogle Scholar
  61. 61.
    Jahan MP, Wong YS, Rahman M (2009) A study on the fine-finish die-sinking micro-EDM of tungsten carbide using different electrode materials. J Mater Process Technol 209(8):3956–3967. doi:10.1016/j.jmatprotec.2008.09.015 CrossRefGoogle Scholar
  62. 62.
    Kunieda M, Lauwers B, Rajurkar K, Schumacher B (2005) Advancing EDM through fundamental insight into the process. CIRP Ann-Manuf Technol 54(2):64–87CrossRefGoogle Scholar
  63. 63.
    Jahan M, Anwar M, Wong Y, Rahman M (2009) Nanofinishing of hard materials using micro-electrodischarge machining. Proc Inst Mech Eng Part B J Eng Manuf 223(9):1127–1142CrossRefGoogle Scholar
  64. 64.
    Jahan M, Wong Y, Rahman M (2009) A study on the quality micro-hole machining of tungsten carbide by micro-EDM process using transistor and RC-type pulse generator. J Mater Process Technol 209(4):1706–1716CrossRefGoogle Scholar
  65. 65.
    Al-Ahmari A, Rasheed MS, Mohammed MK, Saleh T (2016) A hybrid machining process combining micro-EDM and laser beam machining of nickel-titanium based shape memory alloy. Mater Manuf Process 31(4):447–455CrossRefGoogle Scholar
  66. 66.
    Kuriachen B, Mathew J (2016) Effect of powder mixed dielectric on material removal and surface modification in micro electric discharge machining of Ti-6Al-4V. Mater Manuf Process 31(4):439–446CrossRefGoogle Scholar
  67. 67.
    Imran M, Mativenga P, Gholinia A, Withers P (2015) Assessment of surface integrity of Ni superalloy after electrical-discharge, laser and mechanical micro-drilling processes. Int J Adv Manuf Technol 79(5–8):1303–1311Google Scholar
  68. 68.
    Jahan M, Kakavand P, Kwang E, Rahman M, Wong Y (2014) An experimental investigation into the micro-electro-discharge machining behaviour of aluminium alloy (AA 2024). Int J Adv Manuf Technol 78(5–8):1127–1139Google Scholar
  69. 69.
    D’Urso G, Maccarini G, Ravasio C (2015) Influence of electrode material in micro-EDM drilling of stainless steel and tungsten carbide. Int J Adv Manuf Technol 85:2013–2025Google Scholar
  70. 70.
    D’Urso G, Maccarini G, Ravasio C (2014) Process performance of micro-EDM drilling of stainless steel. Int J Adv Manuf Technol 72(9–12):1287–1298CrossRefGoogle Scholar
  71. 71.
    Jahan MP, Rahman M, San Wong Y (2011) Study on the nano-powder-mixed sinking and milling micro-EDM of WC-Co. Int J Adv Manuf Technol 53(1–4):167–180CrossRefGoogle Scholar
  72. 72.
    Yan M-T, Lin S-S (2011) Process planning and electrode wear compensation for 3D micro-EDM. Int J Adv Manuf Technol 53(1):209–219MathSciNetCrossRefGoogle Scholar
  73. 73.
    Ay M, Çaydaş U, Hasçalık A (2013) Optimization of micro-EDM drilling of Inconel 718 superalloy. Int J Adv Manuf Technol 66(5–8):1015–1023CrossRefGoogle Scholar
  74. 74.
    Lin Y, Tsao C, Hsu C, Hung S, Wen D (2012) Evaluation of the characteristics of the microelectrical discharge machining process using response surface methodology based on the central composite design. Int J Adv Manuf Technol 62(9–12):1013–1023CrossRefGoogle Scholar
  75. 75.
    Bissacco G, Valentincic J, Hansen HN, Wiwe B (2010) Towards the effective tool wear control in micro-EDM milling. Int J Adv Manuf Technol 47(1–4):3–9CrossRefGoogle Scholar
  76. 76.
    Azad M, Puri A (2012) Simultaneous optimisation of multiple performance characteristics in micro-EDM drilling of titanium alloy. Int J Adv Manuf Technol 61(9–12):1231–1239CrossRefGoogle Scholar
  77. 77.
    Nguyen MD, Rahman M, San Wong Y (2012) An experimental study on micro-EDM in low-resistivity deionized water using short voltage pulses. Int J Adv Manuf Technol 58(5–8):533–544CrossRefGoogle Scholar
  78. 78.
    Pradhan B, Masanta M, Sarkar B, Bhattacharyya B (2009) Investigation of electro-discharge micro-machining of titanium super alloy. Int J Adv Manuf Technol 41(11–12):1094–1106CrossRefGoogle Scholar
  79. 79.
    Kibria G, Sarkar B, Pradhan B, Bhattacharyya B (2010) Comparative study of different dielectrics for micro-EDM performance during microhole machining of Ti-6Al-4V alloy. Int J Adv Manuf Technol 48(5–8):557–570CrossRefGoogle Scholar
  80. 80.
    Yan M-T, Huang K-Y, Lo C-Y (2009) A study on electrode wear sensing and compensation in micro-EDM using machine vision system. Int J Adv Manuf Technol 42(11–12):1065–1073CrossRefGoogle Scholar
  81. 81.
    Garn R, Schubert A, Zeidler H (2011) Analysis of the effect of vibrations on the micro-EDM process at the workpiece surface. Precis Eng 35(2):364–368CrossRefGoogle Scholar
  82. 82.
    Tong H, Zhang L, Li Y (2014) Algorithms and machining experiments to reduce depth errors in servo scanning 3D micro EDM. Precis Eng 38(3):538–547. doi:10.1016/j.precisioneng.2014.02.002 CrossRefGoogle Scholar
  83. 83.
    Egashira K, Matsugasako A, Tsuchiya H, Miyazaki M (2006) Electrical discharge machining with ultralow discharge energy. Precis Eng 30(4):414–420. doi:10.1016/j.precisioneng.2006.01.004 CrossRefGoogle Scholar
  84. 84.
    Nguyen MD, San Wong Y, Rahman M (2013) Profile error compensation in high precision 3D micro-EDM milling. Precis Eng 37(2):399–407CrossRefGoogle Scholar
  85. 85.
    Li J-Z, Xiao L, Wang H, Yu H-L, Yu Z-Y (2013) Tool wear compensation in 3D micro EDM based on the scanned area. Precis Eng 37(3):753–757. doi:10.1016/j.precisioneng.2013.02.008 CrossRefGoogle Scholar
  86. 86.
    D’Urso G, Merla C (2014) Workpiece and electrode influence on micro-EDM drilling performance. Precis Eng 38(4):903–914CrossRefGoogle Scholar
  87. 87.
    Jameson EC (2001) Electrical discharge machining. Society of Manufacturing Engineers, Dearbern, MichiganGoogle Scholar
  88. 88.
    Maradia U, Knaak R, Dal Busco W, Boccadoro M, Wegener K (2015) A strategy for low electrode wear in meso–micro-EDM. Precis Eng 42:302–310CrossRefGoogle Scholar
  89. 89.
    Weng F-T, Shyu R, Hsu C-S (2003) Fabrication of micro-electrodes by multi-EDM grinding process. J Mater Process Technol 140(1):332–334CrossRefGoogle Scholar
  90. 90.
    Chern G-L, Wang S-D (2007) Punching of noncircular micro-holes and development of micro-forming. Precis Eng 31(3):210–217. doi:10.1016/j.precisioneng.2006.09.001 CrossRefGoogle Scholar
  91. 91.
    Liu K, Lauwers B, Reynaerts D (2010) Process capabilities of micro-EDM and its applications. Int J Adv Manuf Technol 47(1–4):11–19CrossRefGoogle Scholar
  92. 92.
    Masuzawa T, Fujino M, Kobayashi K, Suzuki T, Kinoshita N (1985) Wire electro-discharge grinding for micro-machining. CIRP Ann-Manuf Technol 34(1):431–434CrossRefGoogle Scholar
  93. 93.
    Li Y, Guo M, Zhou Z, Hu M (2002) Micro electro discharge machine with an inchworm type of micro feed mechanism. Precis Eng 26(1):7–14CrossRefGoogle Scholar
  94. 94.
    Wang Y-Q, Bai J-C (2014) Diameter control of microshafts in wire electrical discharge grinding. Int J Adv Manuf Technol 72(9–12):1747–1757. doi:10.1007/s00170-014-5773-z CrossRefGoogle Scholar
  95. 95.
    Yan BH, Huang SH, Huang FY (2006) Bending strength analysis of micro WC-shaft manufactured by micro electro-discharge machining. Int J Adv Manuf Technol 29(7–8):695–706CrossRefGoogle Scholar
  96. 96.
    Suganthi XH, Natarajan U, Sathiyamurthy S, Chidambaram K (2013) Prediction of quality responses in micro-EDM process using an adaptive neuro-fuzzy inference system (ANFIS) model. Int J Adv Manuf Technol 68(1–4):339–347CrossRefGoogle Scholar
  97. 97.
    Chiou A-H, Tsao C-C, Hsu C-Y (2015) A study of the machining characteristics of micro EDM milling and its improvement by electrode coating. Int J Adv Manuf Technol 78(9–12):1857–1864. doi:10.1007/s00170-014-6778-3 CrossRefGoogle Scholar
  98. 98.
    Sheu D-Y, Cheng C-C (2013) Assembling ball-ended styli for CMM’s tactile probing heads on micro EDM. Int J Adv Manuf Technol 65(1–4):485–492CrossRefGoogle Scholar
  99. 99.
    Dave H, Mathai V, Desai K, Raval H (2015) Studies on quality of microholes generated on Al 1100 using micro-electro-discharge machining process. Int J Adv Manuf Technol 76(1–4):127–140CrossRefGoogle Scholar
  100. 100.
    Dave HK, Mathai VJ, Mayanak MK, Raval HK, Desai KP (2015) Study on effect of process parameters on overcut and tool wear rate during micro-electro-discharge slotting process. Int J Adv Manuf Technol 85:2049–2060Google Scholar
  101. 101.
    Li Y, Deng J, Chai Y, Fan W (2015) Surface textures on cemented carbide cutting tools by micro EDM assisted with high-frequency vibration. Int J Adv Manuf Technol 82(9-12):2157–2165Google Scholar
  102. 102.
    Han F, Yamada Y, Kawakami T, Kunieda M (2006) Experimental attempts of sub-micrometer order size machining using micro-EDM. Precis Eng 30(2):123–131. doi:10.1016/j.precisioneng.2005.06.005 CrossRefGoogle Scholar
  103. 103.
    Han F, Wachi S, Kunieda M (2004) Improvement of machining characteristics of micro-EDM using transistor type isopulse generator and servo feed control. Precis Eng 28(4):378–385. doi:10.1016/j.precisioneng.2003.11.005 CrossRefGoogle Scholar
  104. 104.
    Sheu D-Y (2008) High-speed micro electrode tool fabrication by a twin-wire EDM system. J Micromech Microeng 18(10):105014. doi:10.1088/0960-1317/18/10/105014 CrossRefGoogle Scholar
  105. 105.
    Yan J, Kaneko T, Uchida K, Yoshihara N, Kuriyagawa T (2010) Fabricating microgrooves with varied cross-sections by electrodischarge machining. Int J Adv Manuf Technol 50(9–12):991–1002. doi:10.1007/s00170-010-2563-0 CrossRefGoogle Scholar
  106. 106.
    Egashira K, Mizutani K (2002) Micro-drilling of monocrystalline silicon using a cutting tool. Precis Eng 26(3):263–268CrossRefGoogle Scholar
  107. 107.
    Chen S-T (2007) A high-efficiency approach for fabricating mass micro holes by batch micro EDM. J Micromech Microeng 17(10):1961–1970. doi:10.1088/0960-1317/17/10/006 CrossRefGoogle Scholar
  108. 108.
    Chen S-T (2008) Fabrication of high-density micro holes by upward batch micro EDM. J Micromech Microeng 18(8):085002. doi:10.1088/0960-1317/18/8/085002 CrossRefGoogle Scholar
  109. 109.
    Weng F-T, Her M-G (2002) Study of the batch production of micro parts using the EDM process. Int J Adv Manuf Technol 19(4):266–270CrossRefGoogle Scholar
  110. 110.
    Rakwal D, Heamawatanachai S, Tathireddy P, Solzbacher F, Bamberg E (2009) Fabrication of compliant high aspect ratio silicon microelectrode arrays using micro-wire electrical discharge machining. Microsyst Technol 15(5):789–797. doi:10.1007/s00542-009-0792-7 CrossRefGoogle Scholar
  111. 111.
    Chern G-L, Wu Y-JE, Cheng J-C, Yao J-C (2007) Study on burr formation in micro-machining using micro-tools fabricated by micro-EDM. Precis Eng 31(2):122–129. doi:10.1016/j.precisioneng.2006.04.001 CrossRefGoogle Scholar
  112. 112.
    Kuo C-L, Huang J-D (2004) Fabrication of series-pattern micro-disk electrode and its application in machining micro-slit of less than 10 μm. Int J Mach Tool Manu 44(5):545–553. doi:10.1016/j.ijmachtools.2003.10.021 CrossRefGoogle Scholar
  113. 113.
    Jahan MP, Lieh T, San Wong Y, Rahman M (2011) An experimental investigation into the micro-electrodischarge machining behavior of p-type silicon. Int J Adv Manuf Technol 57(5–8):617–637CrossRefGoogle Scholar
  114. 114.
    Jahan M, Rahman M, Wong Y, Fuhua L (2010) On-machine fabrication of high-aspect-ratio micro-electrodes and application in vibration-assisted micro-electrodischarge drilling of tungsten carbide. Proc Inst Mech Eng B J Eng Manuf 224(5):795–814CrossRefGoogle Scholar
  115. 115.
    Yamazaki M, Suzuki T, Mori N, Kunieda M (2004) EDM of micro-rods by self-drilled holes. J Mater Process Technol 149(1–3):134–138. doi:10.1016/j.jmatprotec.2004.03.006 CrossRefGoogle Scholar
  116. 116.
    Kim BH, Park BJ, Chu CN (2006) Fabrication of multiple electrodes by reverse EDM and their application in micro ECM. J Micromech Microeng 16(4):843–850. doi:10.1088/0960-1317/16/4/022 CrossRefGoogle Scholar
  117. 117.
    Takahata K, Shibaike N, Guckel H (2000) High-aspect-ratio WC-Co microstructure produced by the combination of LIGA and micro-EDM. Microsyst Technol 6(5):175–178CrossRefGoogle Scholar
  118. 118.
    Endo T, Tsujimoto T, Mitsui K (2008) Study of vibration-assisted micro-EDM—the effect of vibration on machining time and stability of discharge. Precis Eng 32(4):269–277. doi:10.1016/j.precisioneng.2007.09.003 CrossRefGoogle Scholar
  119. 119.
    Egashira K, Morita Y, Hattori Y (2010) Electrical discharge machining of submicron holes using ultrasmall-diameter electrodes. Precis Eng 34(1):139–144. doi:10.1016/j.precisioneng.2009.05.007 CrossRefGoogle Scholar
  120. 120.
    Yang I, Park MS, Chu CN (2009) Micro ECM with ultrasonic vibrations using a semi-cylindrical tool. Int J Precis Eng Manuf 10(2):5–10. doi:10.1007/s12541-009-0020-5 CrossRefGoogle Scholar
  121. 121.
    Spieser A, Ivanov A (2013) Recent developments and research challenges in electrochemical micromachining (μECM). Int J Adv Manuf Technol 69(1–4):563–581. doi:10.1007/s00170-013-5024-8 CrossRefGoogle Scholar
  122. 122.
    Rees A, Brousseau E, Dimov SS, Bigot S, Griffiths CA (2013) Development of surface roughness optimisation and prediction for the process of wire electro-discharge grinding. Int J Adv Manuf Technol 64(9–12):1395–1410CrossRefGoogle Scholar
  123. 123.
    Egashira K, Mizutani K, Nagao T (2002) Ultrasonic vibration drilling of microholes in glass. CIRP Ann-Manuf Technol 51(1):339–342CrossRefGoogle Scholar
  124. 124.
    Liu K, Melkote SN (2006) Effect of plastic side flow on surface roughness in micro-turning process. Int J Mach Tool Manu 46(14):1778–1785CrossRefGoogle Scholar
  125. 125.
    Sheu D-Y (2010) Microelectrode tools manufacturing by hybrid circuits twin-wire electrodischarge grinding. Mater Manuf Process 25(10):1142–1147. doi:10.1080/10426914.2010.502951 CrossRefGoogle Scholar
  126. 126.
    Hourmand M, Sarhan AAD, Noordin MY (2016) Development of new fabrication and measurement techniques of micro-electrodes with high aspect ratio for micro EDM using typical EDM machine. Measurement. doi:10.1016/j.measurement.2016.11.020

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  1. 1.Center of Advanced Manufacturing and Materials Processing (AMMP)Kuala LumpurMalaysia
  2. 2.Department of Mechanical Engineering, Faculty of EngineeringUniversity of Malaya (UM)Kuala LumpurMalaysia
  3. 3.Department of Mechanical Engineering, Faculty of EngineeringAssiut UniversityAssiutEgypt

Personalised recommendations