Micro-electrode fabrication processes for micro-EDM drilling and milling: a state-of-the-art review
- 396 Downloads
- 2 Citations
Abstract
These days, miniaturized products have a lot of applications in biotechnology, information technology, environmental and medical industries, electric devices, miniaturized machines, and so on. Micro-electrical discharge machining (micro-EDM) is one the most efficient technologies among the nonconventional machining technologies for producing micro-components. Micro-EDM is able to machine tough die materials which cannot be machined by micro-milling. The micro-EDM method has the capability to machine electrical conductive materials with various hardness, strength, and temperature-resistant and complex shapes with accurate dimensions and fine surface roughness. Moreover, it is widely used to produce micro-scale components and structures such as micro-mold, micro-die, micro-probes, micro-tools, fuel nozzles, photo-masks, thin sheet materials, and complex 3D shapes with high accuracy. This paper presents a state-of-the-art review of micro-EDM process as well as the various kinds of micro-electrode and workpiece materials and dielectrics that have been used by previous researchers. In addition, this paper extensively describes and compares various micro-electrode and micro-tool fabrication processes in order to produce precise micro-products. This work is very helpful for the micro-EDM manufacturers and users to select suitable material, dielectric and fabrication processes in researches, and industry applications.
Keywords
Micro-EDM Micro-electrode fabrication High aspect ratio Measurement Micro-drilling Micro-milling DielectricPreview
Unable to display preview. Download preview PDF.
References
- 1.Masuzawa T, Tönshoff H (1997) Three-dimensional micromachining by machine tools. CIRP Ann-Manuf Technol 46(2):621–628CrossRefGoogle Scholar
- 2.Jahan MP, San Wong Y, Rahman M (2010) A comparative experimental investigation of deep-hole micro-EDM drilling capability for cemented carbide (WC-Co) against austenitic stainless steel (SUS 304). Int J Adv Manuf Technol 46(9–12):1145–1160CrossRefGoogle Scholar
- 3.Goda J, Mitsui K (2013) Development of an integrated apparatus of micro-EDM and micro-CMM. Measurement 46(1):552–562CrossRefGoogle Scholar
- 4.Rahman M, Asad A, Masaki T, Saleh T, Wong Y, Senthil Kumar A (2010) A multiprocess machine tool for compound micromachining. Int J Mach Tool Manu 50(4):344–356CrossRefGoogle Scholar
- 5.Asad A, Masaki T, Rahman M, Lim H, Wong Y (2007) Tool-based micro-machining. J Mater Process Technol 192:204–211CrossRefGoogle Scholar
- 6.Lim H, Wong Y, Rahman M, Edwin Lee M (2003) A study on the machining of high-aspect ratio micro-structures using micro-EDM. J Mater Process Technol 140(1):318–325CrossRefGoogle Scholar
- 7.Masuzawa T (2000) State of the art of micromachining. CIRP Ann-Manuf Technol 49(2):473–488CrossRefGoogle Scholar
- 8.Weller EJ (1984) Nontraditional machining process. Society of Manufacturing Engineers, Dearborn, MichiganGoogle Scholar
- 9.Lu Z, Yoneyama T (1999) Micro cutting in the micro lathe turning system. Int J Mach Tool Manu 39(7):1171–1183CrossRefGoogle Scholar
- 10.Rahman M, Senthil Kumar A, Prakash J (2001) Micro milling of pure copper. J Mater Process Technol 116(1):39–43CrossRefGoogle Scholar
- 11.Snoeys R, Staelens F, Dekeyser W (1986) Current trends in non-conventional material removal processes. CIRP Ann-Manuf Technol 35(2):467–480CrossRefGoogle Scholar
- 12.Matsui S, Kaito T, Fujita J, Komuro M, Kanda K, Haruyama Y (2000) Three-dimensional nanostructure fabrication by focused-ion-beam chemical vapor deposition. J Vac Sci Technol B 18(6):3181–3184CrossRefGoogle Scholar
- 13.Okuyama H, Takada H (1998) Micromachining with SR and FEL. Nucl Instr Meth Phys Res B 144(1):58–65CrossRefGoogle Scholar
- 14.Ha KH, Lee SW, Kim J, Jee WY, Chu CN (2015) Fabrication of a micro-hole array on metal foil by nanosecond pulsed laser beam machining using a cover plate. J Micromech Microeng 25(2):027001. doi:10.1088/0960-1317/25/2/027001 CrossRefGoogle Scholar
- 15.Saxena I, Ehmann K, Cao J (2015) High throughput microfabrication using laser induced plasma in saline aqueous medium. J Mater Process Technol 217:77–87. doi:10.1016/j.jmatprotec.2014.10.018 CrossRefGoogle Scholar
- 16.Utlaut M (2014) Focused ion beams for nano-machining and imaging. Nanolithography: the art of fabricating nanoelectronic and nanophotonic devices and systems, 116Google Scholar
- 17.Zhang L, Tong H, Li Y (2015) Precision machining of micro tool electrodes in micro EDM for drilling array micro holes. Precis Eng 39:100–106. doi:10.1016/j.precisioneng.2014.07.010 CrossRefGoogle Scholar
- 18.Rahman MA, Rahman M, Kumar AS, Lim H, Asad A (2006) Development of micropin fabrication process using tool based micromachining. Int J Adv Manuf Technol 27(9):939–944CrossRefGoogle Scholar
- 19.Schoth A, Förster R, Menz W (2005) Micro wire EDM for high aspect ratio 3D microstructuring of ceramics and metals. Microsyst Technol 11(4):250–253CrossRefGoogle Scholar
- 20.Yu Z, Masuzawa T, Fujino M (1998) Micro-EDM for three-dimensional cavities—development of uniform wear method. CIRP Ann-Manuf Technol 47(1):169–172CrossRefGoogle Scholar
- 21.Zhao W, Yang Y, Wang Z, Zhang Y (2004) A CAD/CAM system for micro-ED-milling of small 3D freeform cavity. J Mater Process Technol 149(1):573–578CrossRefGoogle Scholar
- 22.Zhou M, Meng X, Qin J, Chen Z, Lian X (2013) Building an EDM process model by an instrumental variable approach based on two interactive Kalman filters. Precis Eng 37(1):146–158. doi:10.1016/j.precisioneng.2012.07.011 CrossRefGoogle Scholar
- 23.Ramasawmy H, Blunt L, Rajurkar K (2005) Investigation of the relationship between the white layer thickness and 3D surface texture parameters in the die sinking EDM process. Precis Eng 29(4):479–490CrossRefGoogle Scholar
- 24.Furutani K, Shibatani K, Itoh N, Mohri N (1998) A parallel link end effector for scanning electrical discharge machining process. Precis Eng 22(3):131–140CrossRefGoogle Scholar
- 25.Kitamura T, Kunieda M, Abe K (2015) Observation of relationship between bubbles and discharge locations in EDM using transparent electrodes. Precis Eng 40:26–32. doi:10.1016/j.precisioneng.2014.09.009 CrossRefGoogle Scholar
- 26.Tong H, Li Y, Zhang L, Li B (2013) Mechanism design and process control of micro EDM for drilling spray holes of diesel injector nozzles. Precis Eng 37(1):213–221. doi:10.1016/j.precisioneng.2012.09.004 CrossRefGoogle Scholar
- 27.Furutani K, Enami T, Mohri N (1997) Three-dimensional shaping by dot-matrix electrical discharge machining. Precis Eng 21(2):65–71CrossRefGoogle Scholar
- 28.Yang X, Guo J, Chen X, Kunieda M (2011) Molecular dynamics simulation of the material removal mechanism in micro-EDM. Precis Eng 35(1):51–57. doi:10.1016/j.precisioneng.2010.09.005 CrossRefGoogle Scholar
- 29.Puhan D, Mahapatra SS, Sahu J, Das L (2013) A hybrid approach for multi-response optimization of non-conventional machining on AlSiCp MMC. Measurement 46(9):3581–3592CrossRefGoogle Scholar
- 30.Kung K-Y, Horng J-T, Chiang K-T (2009) Material removal rate and electrode wear ratio study on the powder mixed electrical discharge machining of cobalt-bonded tungsten carbide. Int J Adv Manuf Technol 40(1–2):95–104CrossRefGoogle Scholar
- 31.Liu H, Tarng Y (1997) Monitoring of the electrical discharge machining process by abductive networks. Int J Adv Manuf Technol 13(4):264–270CrossRefGoogle Scholar
- 32.Tang L, Guo Y (2014) Electrical discharge precision machining parameters optimization investigation on S-03 special stainless steel. Int J Adv Manuf Technol 70(5–8):1369–1376CrossRefGoogle Scholar
- 33.Teimouri R, Baseri H (2013) Experimental study of rotary magnetic field-assisted dry EDM with ultrasonic vibration of workpiece. Int J Adv Manuf Technol 67(5–8):1371–1384CrossRefGoogle Scholar
- 34.Hourmand M, Farahany S, Sarhan AAD, Noordin MY (2015) Investigating the electrical discharge machining (EDM) parameter effects on Al-Mg2Si metal matrix composite (MMC) for high material removal rate (MRR) and less EWR–RSM approach. Int J Adv Manuf Technol 77(5–8):831–838Google Scholar
- 35.Gopalakannan S, Senthilvelan T (2013) Application of response surface method on machining of Al–SiC nano-composites. Measurement 46(8):2705–2715CrossRefGoogle Scholar
- 36.Puertas I, Luis C, Alvarez L (2004) Analysis of the influence of EDM parameters on surface quality, MRR and EW of WC–Co. J Mater Process Technol 153:1026–1032CrossRefGoogle Scholar
- 37.Keskin Y, Halkacı HS, Kizil M (2006) An experimental study for determination of the effects of machining parameters on surface roughness in electrical discharge machining (EDM). Int J Adv Manuf Technol 28(11–12):1118–1121CrossRefGoogle Scholar
- 38.Sidhu SS, Batish A, Kumar S (2013) EDM of metal matrix composite for parameter design using lexicographic goal programming. Mater Manuf Process 28(4):495–500. doi:10.1080/10426914.2013.763958 CrossRefGoogle Scholar
- 39.Yan BH, Wang CC, Liu W, Huang FY (2000) Machining characteristics of Al2O3/6061Al composite using rotary EDM with a disklike electrode. Int J Adv Manuf Technol 16(5):322–333CrossRefGoogle Scholar
- 40.Mingbo Q, Zhidong L, Zongjun T, Wei W, Yinhui H (2013) Study of unidirectional conductivity on the electrical discharge machining of semiconductor crystals. Precis Eng 37(4):902–907. doi:10.1016/j.precisioneng.2013.05.009 CrossRefGoogle Scholar
- 41.Zhao Y, Kunieda M, Abe K (2015) Multi-discharge EDM coring of single crystal SiC ingot by electrostatic induction feeding method. Precis Eng 41:24–31. doi:10.1016/j.precisioneng.2014.12.007 CrossRefGoogle Scholar
- 42.Kunieda M, Ojima S (2000) Improvement of EDM efficiency of silicon single crystal through ohmic contact. Precis Eng 24(3):185–190CrossRefGoogle Scholar
- 43.Zhao Y, Kunieda M, Abe K (2014) Study of EDM cutting of single crystal silicon carbide. Precis Eng 38(1):92–99. doi:10.1016/j.precisioneng.2013.07.008 CrossRefGoogle Scholar
- 44.Klocke F, Zeis M, Klink A, Veselovac D (2013) Technological and economical comparison of roughing strategies via milling, sinking-EDM, wire-EDM and ECM for titanium-and nickel-based blisks. CIRP J Manuf Sci Technol 6(3):198–203CrossRefGoogle Scholar
- 45.Torres A, Puertas I, Luis C (2015) Modelling of surface finish, electrode wear and material removal rate in electrical discharge machining of hard-to-machine alloys. Precis Eng 40:33–45CrossRefGoogle Scholar
- 46.Song KY, Park MS, Chu CN (2013) Electrical discharge machining using a strip electrode. Precis Eng 37(3):738–745CrossRefGoogle Scholar
- 47.Kunieda M, Kaneko Y, Natsu W (2012) Reverse simulation of sinking EDM applicable to large curvatures. Precis Eng 36(2):238–243. doi:10.1016/j.precisioneng.2011.10.003 CrossRefGoogle Scholar
- 48.Chakraborty S, Dey V, Ghosh S (2015) A review on the use of dielectric fluids and their effects in electrical discharge machining characteristics. Precis Eng 40:1–6CrossRefGoogle Scholar
- 49.Kunieda M, Kameyama A (2010) Study on decreasing tool wear in EDM due to arc spots sliding on electrodes. Precis Eng 34(3):546–553. doi:10.1016/j.precisioneng.2010.01.009 CrossRefGoogle Scholar
- 50.Abbas NM, Kunieda M (2016) Increasing discharge energy of micro-EDM with electrostatic induction feeding method through resonance in circuit. Precis Eng 45:118–125Google Scholar
- 51.Huang SH, Huang FY, Yan BH (2005) Fracture strength analysis of micro WC-shaft manufactured by micro-electro-discharge machining. Int J Adv Manuf Technol 26(1–2):68–77CrossRefGoogle Scholar
- 52.Uhlmann E, Rosiwal S, Bayerlein K, Röhner M (2010) Influence of grain size on the wear behavior of CVD diamond coatings in micro-EDM. Int J Adv Manuf Technol 47(9–12):919–922CrossRefGoogle Scholar
- 53.Alting L, Kimura F, Hansen HN, Bissacco G (2003) Micro engineering. CIRP Ann-Manuf Technol 52(2):635–657CrossRefGoogle Scholar
- 54.Chen S, Yan B, Huang F (1999) Influence of kerosene and distilled water as dielectrics on the electric discharge machining characteristics of Ti–6A1–4 V. J Mater Process Technol 87(1):107–111CrossRefGoogle Scholar
- 55.Ho K, Newman S (2003) State of the art electrical discharge machining (EDM). Int J Mach Tool Manu 43(13):1287–1300CrossRefGoogle Scholar
- 56.Uhlmann E, Piltz S, Doll U (2005) Machining of micro/miniature dies and moulds by electrical discharge machining—recent development. J Mater Process Technol 167(2):488–493CrossRefGoogle Scholar
- 57.Unoa Y, Okada A, Okamoto Y, Yamazaki K, Risbud SH, Yamada Y (1999) High efficiency fine boring of monocrystalline silicon ingot by electrical discharge machining. Precis Eng 23(2):126–133CrossRefGoogle Scholar
- 58.Qin Y, Brockett A, Ma Y, Razali A, Zhao J, Harrison C, Pan W, Dai X, Loziak D (2010) Micro-manufacturing: research, technology outcomes and development issues. Int J Adv Manuf Technol 47(9–12):821–837CrossRefGoogle Scholar
- 59.Tsai YY, Masuzawa T (2004) An index to evaluate the wear resistance of the electrode in micro-EDM. J Mater Process Technol 149(1):304–309CrossRefGoogle Scholar
- 60.Jahan M, Rahman M, Wong Y (2011) A review on the conventional and micro-electrodischarge machining of tungsten carbide. Int J Mach Tool Manu 51(12):837–858CrossRefGoogle Scholar
- 61.Jahan MP, Wong YS, Rahman M (2009) A study on the fine-finish die-sinking micro-EDM of tungsten carbide using different electrode materials. J Mater Process Technol 209(8):3956–3967. doi:10.1016/j.jmatprotec.2008.09.015 CrossRefGoogle Scholar
- 62.Kunieda M, Lauwers B, Rajurkar K, Schumacher B (2005) Advancing EDM through fundamental insight into the process. CIRP Ann-Manuf Technol 54(2):64–87CrossRefGoogle Scholar
- 63.Jahan M, Anwar M, Wong Y, Rahman M (2009) Nanofinishing of hard materials using micro-electrodischarge machining. Proc Inst Mech Eng Part B J Eng Manuf 223(9):1127–1142CrossRefGoogle Scholar
- 64.Jahan M, Wong Y, Rahman M (2009) A study on the quality micro-hole machining of tungsten carbide by micro-EDM process using transistor and RC-type pulse generator. J Mater Process Technol 209(4):1706–1716CrossRefGoogle Scholar
- 65.Al-Ahmari A, Rasheed MS, Mohammed MK, Saleh T (2016) A hybrid machining process combining micro-EDM and laser beam machining of nickel-titanium based shape memory alloy. Mater Manuf Process 31(4):447–455CrossRefGoogle Scholar
- 66.Kuriachen B, Mathew J (2016) Effect of powder mixed dielectric on material removal and surface modification in micro electric discharge machining of Ti-6Al-4V. Mater Manuf Process 31(4):439–446CrossRefGoogle Scholar
- 67.Imran M, Mativenga P, Gholinia A, Withers P (2015) Assessment of surface integrity of Ni superalloy after electrical-discharge, laser and mechanical micro-drilling processes. Int J Adv Manuf Technol 79(5–8):1303–1311Google Scholar
- 68.Jahan M, Kakavand P, Kwang E, Rahman M, Wong Y (2014) An experimental investigation into the micro-electro-discharge machining behaviour of aluminium alloy (AA 2024). Int J Adv Manuf Technol 78(5–8):1127–1139Google Scholar
- 69.D’Urso G, Maccarini G, Ravasio C (2015) Influence of electrode material in micro-EDM drilling of stainless steel and tungsten carbide. Int J Adv Manuf Technol 85:2013–2025Google Scholar
- 70.D’Urso G, Maccarini G, Ravasio C (2014) Process performance of micro-EDM drilling of stainless steel. Int J Adv Manuf Technol 72(9–12):1287–1298CrossRefGoogle Scholar
- 71.Jahan MP, Rahman M, San Wong Y (2011) Study on the nano-powder-mixed sinking and milling micro-EDM of WC-Co. Int J Adv Manuf Technol 53(1–4):167–180CrossRefGoogle Scholar
- 72.Yan M-T, Lin S-S (2011) Process planning and electrode wear compensation for 3D micro-EDM. Int J Adv Manuf Technol 53(1):209–219MathSciNetCrossRefGoogle Scholar
- 73.Ay M, Çaydaş U, Hasçalık A (2013) Optimization of micro-EDM drilling of Inconel 718 superalloy. Int J Adv Manuf Technol 66(5–8):1015–1023CrossRefGoogle Scholar
- 74.Lin Y, Tsao C, Hsu C, Hung S, Wen D (2012) Evaluation of the characteristics of the microelectrical discharge machining process using response surface methodology based on the central composite design. Int J Adv Manuf Technol 62(9–12):1013–1023CrossRefGoogle Scholar
- 75.Bissacco G, Valentincic J, Hansen HN, Wiwe B (2010) Towards the effective tool wear control in micro-EDM milling. Int J Adv Manuf Technol 47(1–4):3–9CrossRefGoogle Scholar
- 76.Azad M, Puri A (2012) Simultaneous optimisation of multiple performance characteristics in micro-EDM drilling of titanium alloy. Int J Adv Manuf Technol 61(9–12):1231–1239CrossRefGoogle Scholar
- 77.Nguyen MD, Rahman M, San Wong Y (2012) An experimental study on micro-EDM in low-resistivity deionized water using short voltage pulses. Int J Adv Manuf Technol 58(5–8):533–544CrossRefGoogle Scholar
- 78.Pradhan B, Masanta M, Sarkar B, Bhattacharyya B (2009) Investigation of electro-discharge micro-machining of titanium super alloy. Int J Adv Manuf Technol 41(11–12):1094–1106CrossRefGoogle Scholar
- 79.Kibria G, Sarkar B, Pradhan B, Bhattacharyya B (2010) Comparative study of different dielectrics for micro-EDM performance during microhole machining of Ti-6Al-4V alloy. Int J Adv Manuf Technol 48(5–8):557–570CrossRefGoogle Scholar
- 80.Yan M-T, Huang K-Y, Lo C-Y (2009) A study on electrode wear sensing and compensation in micro-EDM using machine vision system. Int J Adv Manuf Technol 42(11–12):1065–1073CrossRefGoogle Scholar
- 81.Garn R, Schubert A, Zeidler H (2011) Analysis of the effect of vibrations on the micro-EDM process at the workpiece surface. Precis Eng 35(2):364–368CrossRefGoogle Scholar
- 82.Tong H, Zhang L, Li Y (2014) Algorithms and machining experiments to reduce depth errors in servo scanning 3D micro EDM. Precis Eng 38(3):538–547. doi:10.1016/j.precisioneng.2014.02.002 CrossRefGoogle Scholar
- 83.Egashira K, Matsugasako A, Tsuchiya H, Miyazaki M (2006) Electrical discharge machining with ultralow discharge energy. Precis Eng 30(4):414–420. doi:10.1016/j.precisioneng.2006.01.004 CrossRefGoogle Scholar
- 84.Nguyen MD, San Wong Y, Rahman M (2013) Profile error compensation in high precision 3D micro-EDM milling. Precis Eng 37(2):399–407CrossRefGoogle Scholar
- 85.Li J-Z, Xiao L, Wang H, Yu H-L, Yu Z-Y (2013) Tool wear compensation in 3D micro EDM based on the scanned area. Precis Eng 37(3):753–757. doi:10.1016/j.precisioneng.2013.02.008 CrossRefGoogle Scholar
- 86.D’Urso G, Merla C (2014) Workpiece and electrode influence on micro-EDM drilling performance. Precis Eng 38(4):903–914CrossRefGoogle Scholar
- 87.Jameson EC (2001) Electrical discharge machining. Society of Manufacturing Engineers, Dearbern, MichiganGoogle Scholar
- 88.Maradia U, Knaak R, Dal Busco W, Boccadoro M, Wegener K (2015) A strategy for low electrode wear in meso–micro-EDM. Precis Eng 42:302–310CrossRefGoogle Scholar
- 89.Weng F-T, Shyu R, Hsu C-S (2003) Fabrication of micro-electrodes by multi-EDM grinding process. J Mater Process Technol 140(1):332–334CrossRefGoogle Scholar
- 90.Chern G-L, Wang S-D (2007) Punching of noncircular micro-holes and development of micro-forming. Precis Eng 31(3):210–217. doi:10.1016/j.precisioneng.2006.09.001 CrossRefGoogle Scholar
- 91.Liu K, Lauwers B, Reynaerts D (2010) Process capabilities of micro-EDM and its applications. Int J Adv Manuf Technol 47(1–4):11–19CrossRefGoogle Scholar
- 92.Masuzawa T, Fujino M, Kobayashi K, Suzuki T, Kinoshita N (1985) Wire electro-discharge grinding for micro-machining. CIRP Ann-Manuf Technol 34(1):431–434CrossRefGoogle Scholar
- 93.Li Y, Guo M, Zhou Z, Hu M (2002) Micro electro discharge machine with an inchworm type of micro feed mechanism. Precis Eng 26(1):7–14CrossRefGoogle Scholar
- 94.Wang Y-Q, Bai J-C (2014) Diameter control of microshafts in wire electrical discharge grinding. Int J Adv Manuf Technol 72(9–12):1747–1757. doi:10.1007/s00170-014-5773-z CrossRefGoogle Scholar
- 95.Yan BH, Huang SH, Huang FY (2006) Bending strength analysis of micro WC-shaft manufactured by micro electro-discharge machining. Int J Adv Manuf Technol 29(7–8):695–706CrossRefGoogle Scholar
- 96.Suganthi XH, Natarajan U, Sathiyamurthy S, Chidambaram K (2013) Prediction of quality responses in micro-EDM process using an adaptive neuro-fuzzy inference system (ANFIS) model. Int J Adv Manuf Technol 68(1–4):339–347CrossRefGoogle Scholar
- 97.Chiou A-H, Tsao C-C, Hsu C-Y (2015) A study of the machining characteristics of micro EDM milling and its improvement by electrode coating. Int J Adv Manuf Technol 78(9–12):1857–1864. doi:10.1007/s00170-014-6778-3 CrossRefGoogle Scholar
- 98.Sheu D-Y, Cheng C-C (2013) Assembling ball-ended styli for CMM’s tactile probing heads on micro EDM. Int J Adv Manuf Technol 65(1–4):485–492CrossRefGoogle Scholar
- 99.Dave H, Mathai V, Desai K, Raval H (2015) Studies on quality of microholes generated on Al 1100 using micro-electro-discharge machining process. Int J Adv Manuf Technol 76(1–4):127–140CrossRefGoogle Scholar
- 100.Dave HK, Mathai VJ, Mayanak MK, Raval HK, Desai KP (2015) Study on effect of process parameters on overcut and tool wear rate during micro-electro-discharge slotting process. Int J Adv Manuf Technol 85:2049–2060Google Scholar
- 101.Li Y, Deng J, Chai Y, Fan W (2015) Surface textures on cemented carbide cutting tools by micro EDM assisted with high-frequency vibration. Int J Adv Manuf Technol 82(9-12):2157–2165Google Scholar
- 102.Han F, Yamada Y, Kawakami T, Kunieda M (2006) Experimental attempts of sub-micrometer order size machining using micro-EDM. Precis Eng 30(2):123–131. doi:10.1016/j.precisioneng.2005.06.005 CrossRefGoogle Scholar
- 103.Han F, Wachi S, Kunieda M (2004) Improvement of machining characteristics of micro-EDM using transistor type isopulse generator and servo feed control. Precis Eng 28(4):378–385. doi:10.1016/j.precisioneng.2003.11.005 CrossRefGoogle Scholar
- 104.Sheu D-Y (2008) High-speed micro electrode tool fabrication by a twin-wire EDM system. J Micromech Microeng 18(10):105014. doi:10.1088/0960-1317/18/10/105014 CrossRefGoogle Scholar
- 105.Yan J, Kaneko T, Uchida K, Yoshihara N, Kuriyagawa T (2010) Fabricating microgrooves with varied cross-sections by electrodischarge machining. Int J Adv Manuf Technol 50(9–12):991–1002. doi:10.1007/s00170-010-2563-0 CrossRefGoogle Scholar
- 106.Egashira K, Mizutani K (2002) Micro-drilling of monocrystalline silicon using a cutting tool. Precis Eng 26(3):263–268CrossRefGoogle Scholar
- 107.Chen S-T (2007) A high-efficiency approach for fabricating mass micro holes by batch micro EDM. J Micromech Microeng 17(10):1961–1970. doi:10.1088/0960-1317/17/10/006 CrossRefGoogle Scholar
- 108.Chen S-T (2008) Fabrication of high-density micro holes by upward batch micro EDM. J Micromech Microeng 18(8):085002. doi:10.1088/0960-1317/18/8/085002 CrossRefGoogle Scholar
- 109.Weng F-T, Her M-G (2002) Study of the batch production of micro parts using the EDM process. Int J Adv Manuf Technol 19(4):266–270CrossRefGoogle Scholar
- 110.Rakwal D, Heamawatanachai S, Tathireddy P, Solzbacher F, Bamberg E (2009) Fabrication of compliant high aspect ratio silicon microelectrode arrays using micro-wire electrical discharge machining. Microsyst Technol 15(5):789–797. doi:10.1007/s00542-009-0792-7 CrossRefGoogle Scholar
- 111.Chern G-L, Wu Y-JE, Cheng J-C, Yao J-C (2007) Study on burr formation in micro-machining using micro-tools fabricated by micro-EDM. Precis Eng 31(2):122–129. doi:10.1016/j.precisioneng.2006.04.001 CrossRefGoogle Scholar
- 112.Kuo C-L, Huang J-D (2004) Fabrication of series-pattern micro-disk electrode and its application in machining micro-slit of less than 10 μm. Int J Mach Tool Manu 44(5):545–553. doi:10.1016/j.ijmachtools.2003.10.021 CrossRefGoogle Scholar
- 113.Jahan MP, Lieh T, San Wong Y, Rahman M (2011) An experimental investigation into the micro-electrodischarge machining behavior of p-type silicon. Int J Adv Manuf Technol 57(5–8):617–637CrossRefGoogle Scholar
- 114.Jahan M, Rahman M, Wong Y, Fuhua L (2010) On-machine fabrication of high-aspect-ratio micro-electrodes and application in vibration-assisted micro-electrodischarge drilling of tungsten carbide. Proc Inst Mech Eng B J Eng Manuf 224(5):795–814CrossRefGoogle Scholar
- 115.Yamazaki M, Suzuki T, Mori N, Kunieda M (2004) EDM of micro-rods by self-drilled holes. J Mater Process Technol 149(1–3):134–138. doi:10.1016/j.jmatprotec.2004.03.006 CrossRefGoogle Scholar
- 116.Kim BH, Park BJ, Chu CN (2006) Fabrication of multiple electrodes by reverse EDM and their application in micro ECM. J Micromech Microeng 16(4):843–850. doi:10.1088/0960-1317/16/4/022 CrossRefGoogle Scholar
- 117.Takahata K, Shibaike N, Guckel H (2000) High-aspect-ratio WC-Co microstructure produced by the combination of LIGA and micro-EDM. Microsyst Technol 6(5):175–178CrossRefGoogle Scholar
- 118.Endo T, Tsujimoto T, Mitsui K (2008) Study of vibration-assisted micro-EDM—the effect of vibration on machining time and stability of discharge. Precis Eng 32(4):269–277. doi:10.1016/j.precisioneng.2007.09.003 CrossRefGoogle Scholar
- 119.Egashira K, Morita Y, Hattori Y (2010) Electrical discharge machining of submicron holes using ultrasmall-diameter electrodes. Precis Eng 34(1):139–144. doi:10.1016/j.precisioneng.2009.05.007 CrossRefGoogle Scholar
- 120.Yang I, Park MS, Chu CN (2009) Micro ECM with ultrasonic vibrations using a semi-cylindrical tool. Int J Precis Eng Manuf 10(2):5–10. doi:10.1007/s12541-009-0020-5 CrossRefGoogle Scholar
- 121.Spieser A, Ivanov A (2013) Recent developments and research challenges in electrochemical micromachining (μECM). Int J Adv Manuf Technol 69(1–4):563–581. doi:10.1007/s00170-013-5024-8 CrossRefGoogle Scholar
- 122.Rees A, Brousseau E, Dimov SS, Bigot S, Griffiths CA (2013) Development of surface roughness optimisation and prediction for the process of wire electro-discharge grinding. Int J Adv Manuf Technol 64(9–12):1395–1410CrossRefGoogle Scholar
- 123.Egashira K, Mizutani K, Nagao T (2002) Ultrasonic vibration drilling of microholes in glass. CIRP Ann-Manuf Technol 51(1):339–342CrossRefGoogle Scholar
- 124.Liu K, Melkote SN (2006) Effect of plastic side flow on surface roughness in micro-turning process. Int J Mach Tool Manu 46(14):1778–1785CrossRefGoogle Scholar
- 125.Sheu D-Y (2010) Microelectrode tools manufacturing by hybrid circuits twin-wire electrodischarge grinding. Mater Manuf Process 25(10):1142–1147. doi:10.1080/10426914.2010.502951 CrossRefGoogle Scholar
- 126.Hourmand M, Sarhan AAD, Noordin MY (2016) Development of new fabrication and measurement techniques of micro-electrodes with high aspect ratio for micro EDM using typical EDM machine. Measurement. doi:10.1016/j.measurement.2016.11.020