Advertisement

Probabilistic high cycle fatigue behavior prediction of A356-T6 alloy considering the SDAS dispersion

  • A. Ben Ahmed
  • A. Nasr
  • R. Fathallah
ORIGINAL ARTICLE

Abstract

This paper proposes an engineering approach to determine the probabilistic Kitagawa diagram of defective A356-T6 aluminum alloy considering the modification introduced by varying the secondary dendrite arming spacing (SDAS). The developed approach is carried out by coupling of FE analysis, defect stress gradient (DSG) criterion, and Monte Carlo simulation (MCS) method. In this context, a 3D-finite element analysis (FEA) for different cases of defect sizes and loading conditions using ABAQUS commercial software is established. The nonlinear isotropic/kinematic hardening model implemented in ABAQUS is used to characterize material behavior. Comparing with experimental results, the developed probabilistic approach presents an efficient numerical tool for predicting fatigue limit under fully reserved tension and torsion loadings due to the random distribution of the SDAS parameter. These probabilistic Kitagawa diagrams allow the engineer to be engaged in a practical problem to evaluate the fatigue limit in a more efficient and safe way. In addition, the sensitivity effects of defect size and SDAS parameter for predicting fatigue limit of A356-T6 aluminum alloy under alternate tension and torsion loadings is discussed using response surface methodology (RSM).

Keywords

Fatigue limit Finite element analysis Monte Carlo simulation RSM Probability density function PDF SDAS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wang QG, Caceres CH, Griffiths JR (2003) Damage by eutectic particle cracking in aluminum casting alloys A356/A357. Metallurgical and material transactions A 34A:2901CrossRefGoogle Scholar
  2. 2.
    J.B. Jordon, M.F Horstemeyer, N. Yang, J.F. Major, K.A. Gall, J. Fan, D.L. McDowell. Microstructure inclusion influence on fatigue of a cast A356 aluminum alloy; 2010, 41A: 356.Google Scholar
  3. 3.
    Wang QG, Praud M, Needleman A, Kim KS, Griffiths JR, Davidson CJ, Caceres CH, Benzarga AA (2010) Size effects in aluminum alloy castings. Acta Mater 58:3006–3013CrossRefGoogle Scholar
  4. 4.
    McDowell DL (2007) Simulation-based strategies for microstructure-sensitive fatigue modelling. Mater Sci Eng A 468-470Google Scholar
  5. 5.
    Borbély A, Mughrabi H, Eisenmeier G, Hoppel HW (2002) A finite element modelling study of strain localization in the vicinity of near surface cavities as a cause of subsurface fatigue crack initiation. Int J Fract 115:227–232CrossRefGoogle Scholar
  6. 6.
    Ceschini L, Morri AL, Morri AN (2014) Estimation of local fatigue behaviour in A356-T6 gravity die cast engine head based on solidification defects content. International Journal of Cast Metals Research 27:1CrossRefGoogle Scholar
  7. 7.
    Shaha SK, Czerwinski F, Kasprzak W, Friedman J, Chen DL (2015) Microstructure and mechanical properties of AL-Si cast alloy with additions of Zr-V-Ti. Material & Design 83:801–812CrossRefGoogle Scholar
  8. 8.
    Gonzales R, Gonzales A, Talamantes-Silva J, Valtierra S, Mercado-Solis RD, Garza NF, Montes-de-Oca RC (2013) Fatigue of an aluminium cast alloy used in the manufacture of automotive engine blocks. Int J Fatigue 54:118–126CrossRefGoogle Scholar
  9. 9.
    Ammar HR, Samuel AM, Samuel FH (2008) Porosity and the fatigue behavior of hypoeutectic and hypereutectic aluminum-silicon casting alloys. Int J Fatigue 30:1024–1035CrossRefGoogle Scholar
  10. 10.
    Le V-D, Morel F, Bellett D, Saintier N, Osmond P (2016) Multiaxial high cycle fatigue damage mechanisms associated with the different microstructural heterogeneities of cast aluminum alloys. Material Science & Engineering A 649:426–440CrossRefGoogle Scholar
  11. 11.
    Ran G, Zhou JE (2007) Metallographic characterization of porosity in a cast aluminum alloy A356-T6. Mater Sci 546:989–994Google Scholar
  12. 12.
    Xu Z, Wen W, Zhai T (2012) Effects of pore position in depth on stress/strain concentration and fatigue crack initiation. Metall Mater Trans A 43:2763. doi: 10.1007/s11661-011-0947-x CrossRefGoogle Scholar
  13. 13.
    Davidson CJ, Griffiths JR, Badiali M, Zanada A (2000) Fatigue properties of a semi-solid cast AL-7Si-0.3Mg-T6 alloy. Metallurgical Science and Technology 18:2Google Scholar
  14. 14.
    Ammar HR, Samuel AM, Samuel FH (2008) Effect of casting imperfections on the fatigue life of 319-F and A356-T6 Al-Si casting alloys. Material Science & Engineering A 473:65–75CrossRefGoogle Scholar
  15. 15.
    Wang QG, Apelian D, Lados DA (2001) Fatigue behavior of A356-T6 aluminium cast alloys. Part I. Effect of casting defects. Journal of Light Metal 1:73–84CrossRefGoogle Scholar
  16. 16.
    Wang QG, Apelian D, Lados DA (2001) Fatigue behavior of A356-T6 aluminium cast alloys. Part II. Effect of microstructural constituents. Journal of Light Metal 1:85–97CrossRefGoogle Scholar
  17. 17.
    Li P, Lee PD, Maijer DM, Lindley TC (2009) Quantification of the interaction within defect populations on fatigue behavior in an aluminum alloy. Acta Mater 57:3539–3548CrossRefGoogle Scholar
  18. 18.
    IbenHouriya M, Nadot Y, Fathallah R, Roy M, Maijer DM (2015) Influence of casting defect and SDAS on the multiaxial fatigue behaviour of A356-T6 alloy including mean stress effect. Int J Fatigue 80:90–102CrossRefGoogle Scholar
  19. 19.
    Murakami Y (2002) Metal fatigue: effects of small defects and nonmetallic inclusions. Elsevier Editor, New YorkGoogle Scholar
  20. 20.
    Roy MJ, Nadot Y, Nadot-Martin C, Bardin P-G, Maijer DM (2011) Multiaxial Kitagawa analysis of A356-T6. Int J Fatigue 33:823–832CrossRefGoogle Scholar
  21. 21.
    Roy M, Yves N, Maijer DM, Benoit G (2012) Multiaxial fatigue behaviour of A356-T6. Fatigue & Fracture of Engineering Materials & Structures 35:1148–1159CrossRefGoogle Scholar
  22. 22.
    Koutiri I, Bellett D, Morel F, Augustins L, Adrien J (2013) High cycle fatigue damage mechanisms in cast aluminum subject to complex loads. Int J Fatigue 47:44–57CrossRefGoogle Scholar
  23. 23.
    Mu P, Nadot Y, Nadot Martin C, Chabod A, Serrano-Munoz I, Verdu C (2014) Influence of casting defects on the fatigue behavior of cast aluminum AS7G06-T6. Int J Fatigue 63:97–109CrossRefGoogle Scholar
  24. 24.
    Mu P, Nadot Y, Serrano-Munoz I, Chabod A (2014) Influence of complex defect on cast AS7G06-T6 under multiaxial fatigue loading. Eng Fract Mech 123:148–162CrossRefGoogle Scholar
  25. 25.
    Rice JR (1988) Elastic fracture mechanics concept for interfacial cracks. J Appl Mech 55:99CrossRefGoogle Scholar
  26. 26.
    Susmel L, Taylor D (2008) The theory of critical distances to predict static strength of notched brittle components subjected to mixed-mode loading. Eng Fract Mech 75:534–550CrossRefGoogle Scholar
  27. 27.
    Bouraoui C, Ben Sghaier R, Fathallah R (2009) An engineering predictive design approach of high cycle fatigue reliability of shotpeened metallic parts. Mater Des 30:475–486CrossRefGoogle Scholar
  28. 28.
    Gadouini H, Nadot Y, Rebours C (2008) Influence of mean stress on the multiaxial fatigue behaviour of defective materials. Int J Fatigue 30:1623–1633CrossRefGoogle Scholar
  29. 29.
    Nasr A, Bouraoui C, Fathallah R, Nadot Y (2009) Probabilistic high cycle fatigue behaviour of nodular cast iron containing casting defects. Fatigue & Fracture of Engineering Materials & Structures 32:292–309CrossRefGoogle Scholar
  30. 30.
    He W, Liu J, Xie D (2015) Probabilistic life assessment on fatigue crack growth in mixed-mode by coupling of Kriging model and finite element analysis. Eng Fract Mech 139:56–77CrossRefGoogle Scholar
  31. 31.
    Sanches RF, de Jesus AMP, Correia JAFO, da Silva ALL, Fernandes AA (2015) A probabilistic fatigue approach for riveted joints using Monte Carlo simulation. J Constr Steel Res 110:149–162CrossRefGoogle Scholar
  32. 32.
    Zhao YG, Ono T (2001) Moment methods for structural reliability. Struct Safety 23(1):47–75CrossRefGoogle Scholar
  33. 33.
    Ditlevsen O, Madsen HO (1996) Structural reliability methods. Wiley, HobokenGoogle Scholar
  34. 34.
    Bucher CG, Bourgund U (1990) A fast and efficient response surface approach for structurel reliability problems. Struct Saf 7(1):57–66CrossRefGoogle Scholar
  35. 35.
    Rajashekhar MR, Ellingwood BR (1990) A now look at the response surface approach for reliability analysis. Struct Saf 12(3):205–220CrossRefGoogle Scholar
  36. 36.
    Myers RH, Mongomery DH (1995) Response surface methodology. Wiley, USAGoogle Scholar
  37. 37.
    Faravelli L (1989) Response-surface approach for reliability analysis. Journal Engineering Mechanics 115(12):2763–2781CrossRefGoogle Scholar
  38. 38.
    Le Pen E, Baptiste D (2001) Prediction of the fatigue-damaged behaviour of Al/Al2 O3 composites by a micro-macro approach. Compos Sci Technol 61:2317–2326CrossRefGoogle Scholar
  39. 39.
    Nadot Y, Billaudeau T (2006) Multiaxial fatigue limit criterion for defective materials. Eng Fract Mech 73:112–133CrossRefGoogle Scholar
  40. 40.
    Ting J, Lawrence FV (1993) Modelling the long-life fatigue behaviour of a cast aluminium alloy. Fatigue Fract Eng Mater Struct 1993(16):631–647CrossRefGoogle Scholar
  41. 41.
    Wannes H, Nasr A, Bouraoui C (2016) New fatigue limit assessment approach of defective material under fully reserved tension and torsion loading. Mechanic & Industry 113:310CrossRefGoogle Scholar
  42. 42.
    Vincent M, Nadot-Martin C, Nadot Y, Dragon A (2014) Fatigue from defect under multiaxial loading: defect stress gradient (DSG) approach using ellipsoidal equivalent inclusion method. Int J Fatigue 59:176–187CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  1. 1.Laboratoire de Mécanique de Sousse (LMS), Ecole Nationale d’Ingénieurs de Sousse (ENISo)Université de SousseSousseTunisia
  2. 2.Laboratoire de Génie Mécanique (LGM), Institut préparatoire aux études d’ingénieurs de Monastir (IPEM)Université de MonastirMonastirTunisia

Personalised recommendations