A design, mechanical rating, and load adaptation method for cellular components for additive manufacturing

  • Tobias ZieglerEmail author
  • Raimund Jaeger
  • Christof Koplin


We present a tool for Design for Additive Manufacturing by internally structuring bulk volumes for lightweight construction. Essential to cost efficient, rapid prototyping is a reliable assessment of mechanical properties without having to build spare samples for testing. Due to its regular nature, our structure allows a beforehand calculation of the mechanical properties like strength and stiffness, even for large geometries with many cells. To improve the mechanical performance of the entire component, the structure of the cells can be adapted in response to a pre-determined load. This adaptation is achieved by locally increasing the diameter of selected struts. Moreover, the mechanical performance of the optimized structure can also be predicted by Finite Element Modeling. The adaptation significantly enhances the load bearing capacity of the product with a low increase in material and production time. For the parameterization of finite element calculations, tests on only a few structured representative specimens are necessary to model the material used in the additive manufacturing process. We have performed the necessary experiments and developed a homogenized material model for a structure made of polyamide 12, which is used in Selective laser sintering and offers specific strength comparable to steel. To prove the viability of the layout and rating method, we structured, manufactured, and tested one life size cantilever chair. The approach presented in this paper can be applied to a large variety of component shapes and many additive manufacturing processes to assess and improve the mechanical capacity of a cellular structure based on how a few cells of a small volume perform.


Additive manufacturing Homogenization Cellular structures Optimization Design for additive manufacturing Selective laser sintering PA12 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ajoku U, Saleh N, Hopkinson N, Hague R, Erasenthiran P (2006) Investigating mechanical anisotropy and end-of-vector effect in laser-sintered nylon parts. Proc IMechE, Part B: J Engineering Manufacture 220(7):1077–1086CrossRefGoogle Scholar
  2. 2.
    Bernotat A (2013) Cellular Loop: Ein Freischwinger, entwickelt nach dem Vorbild der Natur. Bautechnik 90(12):777–782CrossRefGoogle Scholar
  3. 3.
    Bruns A (2005) Numerische Untersuchung zum Tragverhalten von dünnwandigen, zylindrischen, zellulären Strukturen unter axialer Belastung, Diplomica Verlag GmbH, Hamburg, ISBN-13: 978–3838689852Google Scholar
  4. 4.
    Caulfield B, McHugh PE, Lohfeld S (2007) Dependence of mechanical properties of polyamide components on build parameters in the SLS process. J Mater Process Technol 182(1):477–488CrossRefGoogle Scholar
  5. 5.
    Chen Y (2006) A mesh-based geometric modeling method for general structures. Proceedings of DETC'06 ASME Conference Philadelphia, Pennsylvania, September 10–13, 2006Google Scholar
  6. 6.
    Cook D, Knier B, Gervasi V, Stahl D (2010) Automatic generation of strong, light, mutli-functional structures from FEA output. Proceedings of the 21st Annual International Solid Freeform Fabrication (SFF) Symposium, AustinGoogle Scholar
  7. 7.
    DCS Simulia (2011) Abaqus 6.12 analysis user's manual. Abaqus 6.12 DocumentationGoogle Scholar
  8. 8.
    Fratzl P (2007) Biomimetic materials research—what can we really learn from Nature’s structural materials? J R Soc Interface 4:637–642CrossRefGoogle Scholar
  9. 9.
    Gibson LJ (2005) Biomechanics of cellular solids. J Biomech 38(3):377–399CrossRefGoogle Scholar
  10. 10.
    Goodridge RD, Tuck CJ, Hague RJM (2012) Laser sintering of polyamides and other polymers. Prog Mater Sci 57(2):229–267CrossRefGoogle Scholar
  11. 11.
    Hashin Z, Shtrikman S (1963) A variational approach to the theory of the elastic behaviour of multiphase materials. J Mech Phys Solid 11:127–140MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hill R (1963) Elastic properties of reinforced solids: some theoretical principles. J Mech Phys Solids 11:357–372CrossRefzbMATHGoogle Scholar
  13. 13.
    Hjelm H E (1992) Elastoplasticity of Grey Cast Iron, FE-Algorithms and Biaxial Experiments. Dissertation Chalmers University of Technology, SwedenGoogle Scholar
  14. 14.
    Hori M, Nemat-Nasser S (1999) On two micromechanics theories for determining micro-macro relations in heterogeneous solids. Mech Mat 31:667–682CrossRefGoogle Scholar
  15. 15.
    Kaddar W, Witt G (2010) Die Festigkeit in Abhängigkeit von Scanstrategien &-optionen beim Lasersintern vom Kunststoff. Navigation 7:8Google Scholar
  16. 16.
    Kowalczyk P (2003) Elastic properties of cancellous bone derived from finite element models of parameterized microstructure cells. J Biomech 36:961–972CrossRefGoogle Scholar
  17. 17.
    Nunan K, Keller J (1984) Effective elasticity tensor of a periodic composite. J Mech Phys Solid 32:259–280CrossRefzbMATHGoogle Scholar
  18. 18.
    Oxman N (2011) Variable property rapid prototyping. Virtual Phys Prototyp 6:3–31CrossRefGoogle Scholar
  19. 19.
    Petrovic V, Haro JC, Jordá O, Delgado J, Blasco JR, Portolés L (2010) Additive layered manufacturing: sectors of industrial application shown through case studies. Int J Prod Res 49:1061–1079CrossRefGoogle Scholar
  20. 20.
    Ponche R, Kerbrat O, Mognol P, Hascoët JY (2014) A novel methodology of design for additive manufacturing applied to additive laser manufacturing process. Robot Comput Integr Manuf 30(4):389–398CrossRefGoogle Scholar
  21. 21.
    Rosen D W (2007) Design for additive manufacturing: a method to explore unexplored regions of the design space. In Eighteenth Annual Solid Freeform Fabrication Symposium (pp. 402–415)Google Scholar
  22. 22.
    Schmid M (2015) Selektives Lasersintern (SLS) mit Kunststoffen: Technologie, Prozesse und Werkstoffe. Carl Hanser Verlag GmbH Co KG. ISBN: 978–3–446-44562-8Google Scholar
  23. 23.
    Teufelhart S, Reinhart G (2012) Optimization of strut diameters in lattice structures. Proceedings of the 23rd Annual International Solid Freeform Fabrication (SFF) Symposium, AustinGoogle Scholar
  24. 24.
    Van Hooreweder B, De Coninck F, Moens D, Boonen R, Sas P (2010) Microstructural characterization of SLS-PA12 specimens under dynamic tension/compression excitation. Polym Test 29(3):319–326CrossRefGoogle Scholar
  25. 25.
    Ziegler T, Koplin C, Jaeger R (2012) Verfahren zur Konstruktion mechanischer Komponenten. Patent DE-102012203869.8 (2012) und EP13158226.4 (2013)Google Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  • Tobias Ziegler
    • 1
    Email author
  • Raimund Jaeger
    • 1
  • Christof Koplin
    • 1
  1. 1.Fraunhofer Institute for Mechanics of Materials IWMFreiburgGermany

Personalised recommendations