Dynamic performance of industrial robot with CNC controller

  • Kai Wu
  • Carsten Krewet
  • Jobst Bickendorf
  • Bernd Kuhlenkoetter


As the application of industrial robots in machining is constantly increasing, many techniques have been developed to make this use more efficient and accurate. The robot controller is one of the key factors to influence the robot performance. This paper discusses the performance of a CNC kernel which is directly integrated into the industrial robot. The dynamic motion of the robot is thoroughly analyzed. A conventional robot controller is carefully evaluated to make a clear comparison.


Robot motion CNC Robot control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Karim A, Verl A (2013) Challenges and obstacles in robot-machining, in: IEEE ISR. IEEE, Seoul 2013:1–4. doi: 10.1109/ISR.2013.6695731 Google Scholar
  2. 2.
    Chen Y, Dong F (2013) Robot machining: recent development and future research issues. Int J Adv Manuf Technol 66:1489–1497. doi: 10.1007/s00170-012-4433-4 CrossRefGoogle Scholar
  3. 3.
    ABB, High Performance Robot, (n.d.). Accessed 2 Feb 2016
  4. 4.
    KUKA Roboter GmbH, Heavy duty robot in MT-version, (n.d.). Accessed 2 Feb 2016
  5. 5.
  6. 6.
    Björkman M, Brogårdh T, Hanssen S, Lindström S-E, Moberg S, Norrlöf M (2008) A new concept for motion control of industrial robots. Google Scholar
  7. 7.
    Jeon JW, Ha YY (2000) A generalized approach for the acceleration and deceleration of industrial robots and CNC machine tools. IEEE Trans Ind Electron 47:133–139. doi: 10.1109/41.824135 CrossRefGoogle Scholar
  8. 8.
    Jiang Z, Ishita T (2008) A neural network controller for trajectory control of industrial robot manipulators. J Comput 3:1–9. doi: 10.4304/jcp.3.8.1-8 Google Scholar
  9. 9.
    Olabi A, Béarée R, Gibaru O, Damak M (2010) Feedrate planning for machining with industrial six-axis robots. Control Eng Pract 18:471–482. doi: 10.1016/j.conengprac.2010.01.004 CrossRefGoogle Scholar
  10. 10.
    KUKA Roboter GmbH, KUKA.CNC for maximum robot performance in machining processes, 2011.
  11. 11.
    Bay A (2012) KUKA.CNC—a direct approach. Auto Tech Rev 1:54–55. doi: 10.1365/s40112-012-0194-6 CrossRefGoogle Scholar
  12. 12.
    Industrielle Steuerungstechnik GmbH, Programming manual, Stuttgart, 2010Google Scholar
  13. 13.
    KUKA Roboter GmbH, KUKA.CNC 2.0 for KUKA System Software 8.2, 2012Google Scholar
  14. 14.
    KUKA Roboter GmbH, KUKA System Software 8.2 operating and programming instructions for system integrators, 2011Google Scholar
  15. 15.
    Wu K, Brueninghaus J, Johnen B, Kuhlenkoetter B (2015) Applicability of stereo high speed camera systems for robot dynamics analysis. Int Conf Control Autom Robot, IEEE, Singapore 2015:44–48. doi: 10.1109/ICCAR.2015.7165999 Google Scholar
  16. 16.
    Janabi-Sharifi F, Hayward V, Chen CJ (2000) Discrete-time adaptive windowing for velocity estimation. IEEE Trans Control Syst Technol 8:1003–1009. doi: 10.1109/87.880606 CrossRefGoogle Scholar
  17. 17.
    Cheng K (Ed) (2009) Machining dynamics: theory, applications and practices. Springer-Verlag London. doi: 10.1007/978-1-84628-368-0

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  • Kai Wu
    • 1
  • Carsten Krewet
    • 2
  • Jobst Bickendorf
    • 2
  • Bernd Kuhlenkoetter
    • 1
  1. 1.Chair of Production SystemsRuhr-University of BochumBochumGermany
  2. 2.Institute of Production SystemsTU Dortmund UniversityDortmundGermany

Personalised recommendations