Advertisement

Three-beam laser brazing of zinc-coated steel

  • Wilfried Reimann
  • Michael Dobler
  • Martin Goede
  • Michael Schmidt
  • Klaus Dilger
ORIGINAL ARTICLE

Abstract

This work investigates the use of a trifocal laser intensity distribution to control the applied heat profile for laser brazing of hot-dip galvanized steel. Process analysis of conventional monofocal brazing processes showed that spatter and other process disruptions mainly originate from zinc dissolution and evaporation at the wetting line. In order to increase process stability and seam quality, a trifocal brazing method was developed and applied for brazing experiments. A transient three-dimensional model of the brazing processes shows a shift of the achieved temperature distribution and thus a separated evaporation of the zinc coating prior to the wetting with molten CuSi3 brass. The influence of the adjusted intensity distribution in the process area was analyzed with high-speed video imaging, thermal imaging, and metallographic analysis of the seam properties. The experimental analysis confirms that during trifocal brazing, a local zinc evaporation takes place prior to the spreading of the molten filler metal. As a result, a less turbulent processing zone and a superior seam quality are attained.

Keywords

Laser brazing Process simulation Trifocal Multi core fiber Hot-dip galvanized steel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Graudenz M, Heitmanek M (2012) Laser tools in the manufacturing process. Laser Tech J 9:24–27. doi: 10.1002.latj.201290049 CrossRefGoogle Scholar
  2. 2.
    Ungers M, Fecker D, Frank S, Donst D, Märgner V, Abels P, Kaierle S (2010) In-situ quality monitoring during laser brazing. Phys Procedia 5:493503. doi: 10.1016/j.phpro.2010.08.077 CrossRefGoogle Scholar
  3. 3.
    Fenggui L, Binfeng L, Xinhua T, Shun Y (2008) Study of influencing factors and joint performance of laser brazing on zinc-coated steel plate. Int J Adv Manuf Technol 37:961965. doi: 10.1007/s00170-007-1035-7 Google Scholar
  4. 4.
    Grimm A, Schmid M (2009) Possibilities for online process monitoring at laser brazing based on two dimensional detector systems. In: Xinbing L (ed) Conference proceedings ICALEO, vol 2009. Laser Institute of America, Orlando, pp 537– 544Google Scholar
  5. 5.
    Kimura S, Takemura S, Mizutani M, Katayama S (2006) Laser brazing phenomena of galvanized steel and pit formation mechanism. In: Ostendorf A (ed) Conference proceedings ICALEO, vol 2006. Laser Institute of America, Orlando, pp 346– 354Google Scholar
  6. 6.
    Koltsov A, Bailly N, Cretteur L (2010) Wetting and laser brazing of Zn-coated steel products by CuSi filler metal. J Mater Sci 45:21182125. doi: 10.1007/s10853-009-3949-y Google Scholar
  7. 7.
    Gatzen M, Radel T, Thomy C, Vollertsen F (2014) The role of zinc layer during wetting of aluminium on zinc-coated steel in laser brazing and welding. Phys Procedia 56:730739. doi: 10.1016/j.phpro.2014.08.080 CrossRefGoogle Scholar
  8. 8.
    Gatzen M, Radel T, Thomy C, Vollertsen F (2014) Wetting behavior of eutectic AlSi droplets on zinc coated steel substrates. J Mater Process Technol 214:123131. doi: 10.1016/j.jmatprotec.2013.08.005 CrossRefGoogle Scholar
  9. 9.
    Heyn H (2003) Laserstrahllöten von verzinktem Stahl - Einfluss der Oberflächenbeschichtung. EALA - European Automotive Laser Applications, 08.04.2003, Bad NauheimGoogle Scholar
  10. 10.
    Schmidt M, Otto A, Kägeler C (2008) Analysis of YAG laser lap-welding of zinc coated steel sheets. CIRP Ann - Manuf Technol 57:213216. doi: 10.1016/j.cirp.2008.03.043 CrossRefGoogle Scholar
  11. 11.
    Roos C, Schmidt M (2014) Remote laser welding of zinc coated steel sheets in an edge lap configuration with zero gap. Phys Procedia 56:535544. doi: 10.1016/j.phpro.2014.08.025 CrossRefGoogle Scholar
  12. 12.
    Hesse T (2008) Neue Erkenntnisse und Lösungs-grundlagen beim Laserstrahlschweißen von verzinkten Werkstoffen. European Automotive Laser Applications, 31.01.2008, Bad NauheimGoogle Scholar
  13. 13.
    Rito N, Ohta M, Yamada T, Gotoh J, Kitagawa T (1988) Laser welding method. US patent 4745257 AGoogle Scholar
  14. 14.
    AlShaer A W, Li L, Mistry A (2014) The effects of short pulse laser surface cleaning on porosity formation and reduction in laser welding of aluminium alloy for automotive component manufacture. Opt Laser Technol 64:162–171. doi: 10.1016/j.optlastec.2014.05.010 CrossRefGoogle Scholar
  15. 15.
    Milberg J, Trautmann A (2009) Defect-free joining of zinc-coated steels by bifocal hybrid laser welding. Prod Eng 3:9–15. doi: 10.1007/s11740-008-0140-2 CrossRefGoogle Scholar
  16. 16.
    Kögel G (2014) Kurzpulslaser machen tailored welded blanks fit für das Presshärten. Blech 04:18–24Google Scholar
  17. 17.
    Donst D (2012) Entwicklung eines Zweistrahlverfahrens zum flussmittelfreien Laserstrahlhartlöten von Alumini-umblechwerkstoffen. Dissertation, RWTH AachenGoogle Scholar
  18. 18.
    Frank S (2015) Flux-free laser joining of aluminum and galvanized steel. J Mater Process Technol 222:365372. doi: 10.1016/j.jmatprotec.2015.03.032 CrossRefGoogle Scholar
  19. 19.
    Hanebuth (1996) Laserstrahlhartlöten mit Zwei-strahltechnik. Dissertation, Friedrich Alexander Universität Erlangen NürnbergGoogle Scholar
  20. 20.
    Hoffmann P, Hornig H, Berndl J (2006) Mehrstrahllaserbearbeitungskopf. European patent 1935552 B1Google Scholar
  21. 21.
    Hoffmann P, Schwab J, Foertschbeck E (2004) Twins spot technology for an advanced laser brazing process. In: Geiger M, Otto A (eds) Proceedings of the 4th LANE. Meisenbach-Verlag, Bamberg, pp 259–262Google Scholar
  22. 22.
    Grimm A, Schmidt M, Hoffmann P (2010) Laserstrahllöten mit Koaxialer Drahtzuführung. In: DVS-Berichte Band, vol 267. DVS Media, Düsseldorf, p 312320Google Scholar
  23. 23.
    Mittelstädt C, Seefeld T, Reitemeyer D, Vollertsen F (2014) Two-beam laser brazing of thin sheet steel for automotive industry using Cu-base filler material. Phys Procedia 56:699708. doi: 10.1016/j.phpro.2014.08.077 CrossRefGoogle Scholar
  24. 24.
    Heitmanek M, Dobler M, Graudenz M, Perret W, Göbel G, Schmidt M, Beyer E (2014) Laser brazing with beam scanning: Experimental and simulative analysis. Phys Procedia 56:689698. doi: 10.1016/j.phpro.2014.08.076 CrossRefGoogle Scholar
  25. 25.
    Victor B, Farson F, Ream S, Walters C (2011) Custom beam shaping for high-power fiber laser welding. Weld J 90:113120Google Scholar
  26. 26.
    Goffin N, Higginson R, Tyrer J (2015) The use of holographic optical elements (HOE’s) to investigate the use of a flat irradiance profile in the control of heat absorption in wire-fed laser cladding. J Mater Process Technol 220:191201. doi: 10.1016/j.jmatprotec.2015.01.023 CrossRefGoogle Scholar
  27. 27.
    Chen S, Li L, Chen Y, Daic J, Huang J (2011) Improving interfacial reaction nonhomogeneity during laser weldingbrazing aluminum to titanium. Mater Des 32:44084416. doi: 10.1016/j.matdes.2011.03.074 Google Scholar
  28. 28.
    Li L, Feng X, Chen Y (2008) Influence of laser energy input mode on joint interface characteristics in laser brazing with Cu-base filler metal. Trans Nonferrous Metals Soc China 18:10651070. doi: 10.1016/S1003-6326(08)60182-X Google Scholar
  29. 29.
    Hansen K, Kristiansen M, Olsen F (2014) Beam shaping to control of weldpool size in width and depth. Phys Procedia 56:467476. doi: 10.1016/j.phpro.2014.08.150 CrossRefGoogle Scholar
  30. 30.
    Weller H, Tabor G, Jasak H, Fureby C (1998) A tensorial approach to computational continuum mechanics using objectoriented techniques. Comput Phys 12:620–631. doi: 10.1063/1.168744 CrossRefGoogle Scholar
  31. 31.
    Dobler M, Leitz K, Otto A, Schmidt M (2013) Simulation of process dynamics in laser beam brazing. In: Kaierle S (ed) Conference proceedings ICALEO, vol 2013. Laser Institute of America, Orlando, pp 85–90Google Scholar
  32. 32.
    Saunders N, Guo U, Li X, Miodownik A, Schillé J (2003) Using JMatPro to model materials properties and behavior. J Miner Met Mater Soc 55:60–65. doi: 10.1007/s11837-003-0013-2 CrossRefGoogle Scholar
  33. 33.
    Kai M, Zhishui Y, Peilei Z, Yunlong L, Hua L, Chonggui L, Xiaopeng L (2015) Influence of wire feeding speed on laser brazing zinc-coated steel with Cu-based filler metal. Int J Adv Manuf Technol 76:13331342. doi: 10.1007/s00170-014-6347-9 CrossRefGoogle Scholar
  34. 34.
    Jia L, Shichun J, Yan S, Cong N, Junke C, Genzhe H (2015) Effects of zinc on the laser welding of an aluminum alloy and galvanized steel. J Mater Process Technol 224:4959. doi: 10.1016/j.jmatprotec.2015.04.017 CrossRefGoogle Scholar
  35. 35.
    Eustathopoulus N, Nicolas M, Drevet B (1999) Wettability at high temperatures. Elsevier, Oxford, pp 348–382Google Scholar
  36. 36.
    Marder A (2000) The metallurgy of zinc-coated steel. Prog Mater Sci 45:191271. doi: 10.1016/S0079-6425(98)00006-1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  • Wilfried Reimann
    • 1
    • 3
  • Michael Dobler
    • 2
  • Martin Goede
    • 1
  • Michael Schmidt
    • 2
  • Klaus Dilger
    • 3
  1. 1.Volkswagen AG, Technologieplanung und -entwicklungWolfsburgGermany
  2. 2.Institute of Photonic Technologies, FAU Erlangen-NürnbergErlangenGermany
  3. 3.Institut für Füge- und Schweißtechnik, TU BraunschweigBraunschweigGermany

Personalised recommendations