Chemical vapor treatment of ABS parts built by FDM: Analysis of surface finish and mechanical strength

ORIGINAL ARTICLE

Abstract

The present study investigates the simultaneous effect of part building orientation (along the X, Y, and Z axis) and raster angle (0°, 30°, 60°, and 90°) on surface roughness, tensile strength, flexural strength, consumption of model, support material, and building time of acrylonitrile butadiene styrene (ABS) test specimens fabricated by fused deposition modeling (FDM) process. Mechanical properties and surface roughness show a strong anisotropic behavior for the parts. For parts built with the X or Y orientations and 30° or 60° raster angle, pulling of fiber and a small amount of necking along with tearing are observed, which are responsible for higher strength. Post-built treatment of the parts with cold vapors of dimethyl ketone resulted in an immense improvement in surface finish. Exposing the parts in cold vapors turns the surfaces to a soft/mushy-like state due to the weakening of the secondary bonds, and the minor flow of polymer layers fills the cavity region between the adjacent layers and helps in improving the surface finish after the treatment.

Keywords

Part orientation Raster angle Surface roughness Mechanical strength Build cost Cold vapor treatment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gurrala PK, Regalla SP (2014) Part strength evolution with bonding between filaments in fused deposition modelling. Virtual Phys Prototyp 9(3):141–149CrossRefGoogle Scholar
  2. 2.
    Sood AK, Equbal A, Toppo V, Ohdar RK, Mahapatra SS (2012) An investigation on sliding wear of FDM built parts. CIRP J Manuf Sci Technol 5:48–54CrossRefGoogle Scholar
  3. 3.
    Sun Q, Rizvi GM, Bellehumeur CT, Gu P (2008) Effect of processing conditions on the bonding quality of FDM polymer filaments. Rapid Prototyp J 14(2):72–80CrossRefGoogle Scholar
  4. 4.
    Sood AK, Ohdar RK, Mahapatra SS (2010) Parametric appraisal of fused deposition modelling process using the grey Taguchi method. Proc Inst Mech Eng B J Eng Manuf 224(1):135–145CrossRefGoogle Scholar
  5. 5.
    Alexander P, Allen S, Dutta D (1998) Part orientation and build cost determination in layered manufacturing. Comput Aided Des 30(5):343–356CrossRefGoogle Scholar
  6. 6.
    Pilipović A, Raos P, Šercer M (2009) Experimental analysis of properties of materials for rapid prototyping. Int J Adv Manuf Technol 40:105–115CrossRefGoogle Scholar
  7. 7.
    Xu F, Loh HT, Wong YS (1999) Considerations and selection of optimal orientation for different rapid prototyping systems. Rapid Prototyp J 5(2):54–60CrossRefGoogle Scholar
  8. 8.
    Thrimurthulu K, Pandey PM, Reddy NV (2004) Optimum part deposition orientation in fused deposition modeling. Int J Mach Tool Manu 44:585–594CrossRefMATHGoogle Scholar
  9. 9.
    Byun HS, Lee KH (2005) Determination of the optimal part orientation in layered manufacturing using a genetic algorithm. Int J Prod Res 43(13):2709–2724CrossRefMATHGoogle Scholar
  10. 10.
    Es-Said OS, Foyos J, Noorani R, Mendelson M, Marloth R, Pregger BA (2000) Effect of layer orientation on mechanical properties of rapid prototyped samples. Mater Manuf Process 15(1):107–122CrossRefGoogle Scholar
  11. 11.
    Noriega A, Blanco D, Alvarez BJ, Garcia A (2013) Dimensional accuracy improvement of FDM square cross-section parts using artificial neural networks and an optimization algorithm. Int J Adv Manuf Technol 69(9):2301–2313CrossRefGoogle Scholar
  12. 12.
    Vijayaraghavan V, Garg A, Lam JSL, Panda B, Mahapatra SS (2015) Process characterisation of 3D-printed FDM components using improved evolutionary computational approach. Int J Adv Manuf Technol 78(5):781–793CrossRefGoogle Scholar
  13. 13.
    Anitha R, Arunachalam S, Radhakrishnan P (2001) Critical parameters influencing the quality of prototypes in fused deposition modelling. J Mater Process Tech 118:385–388CrossRefGoogle Scholar
  14. 14.
    Pérez CJL (2002) Analysis of the surface roughness and dimensional accuracy capability of fused deposition modelling processes. Int J Prod Res 40(12):2865–2881CrossRefGoogle Scholar
  15. 15.
    Ahn D, Kweon JH, Kwon S, Song J, Seokhee L (2009) Representation of surface roughness in fused deposition modeling. J Mater Process Tech 209:5593–5600CrossRefGoogle Scholar
  16. 16.
    Sood AK, Ohdar RK, Mahapatra SS (2010) Parametric appraisal of mechanical property of fused deposition modelling processed parts. Mater Des 31:287–295CrossRefGoogle Scholar
  17. 17.
    Gurrala PK, Regalla SP (2014) Multi-objective optimization of strength and volumetric shrinkage of FDM parts. Virtual Phys Prototyp 9(2):127–138CrossRefGoogle Scholar
  18. 18.
    Pandey PM, Reddy NV, Dhande SG (2003) Improvement of surface finish by staircase machining in fused deposition modeling. J Mater Process Tech 132:323–331CrossRefGoogle Scholar
  19. 19.
    Galeta T, Raos P, Somolanji M (2012) Impact of structure and building orientation on strength of 3D printed models. KGK-Kautschuk Gummi Kunststoffe 65(10):36–42Google Scholar
  20. 20.
    Krolczyk G, Raos P, Legutko S (2014) Experimental analysis of surface roughness and surface texture of machined and fused deposition modelled parts. Tehnicki Vjesnik - Technical Gazette 21(1):217–221Google Scholar
  21. 21.
    Boschetto A, Giordano V, Veniali F (2013) Surface roughness prediction in fused deposition modelling by neural networks. Int J Adv Manuf Technol 67(9):2727–2742CrossRefGoogle Scholar
  22. 22.
    Boschetto A, Bottini L (2014) Accuracy prediction in fused deposition modeling. Int J Adv Manuf Technol 73(5):913–928CrossRefGoogle Scholar
  23. 23.
    Rahmati S, Vahabli E (2015) Evaluation of analytical modeling for improvement of surface roughness of FDM test part using measurement results. Int J Adv Manuf Technol 79(5):823–829CrossRefGoogle Scholar
  24. 24.
    Galantucci LM, Lavecchia F, Percoco G (2009) Experimental study aiming to enhance the surface finish of fused deposition modeled parts. CIRP Ann Manuf Techn 58:189–192CrossRefGoogle Scholar
  25. 25.
    Galantucci LM, Lavecchia F, Percoco G (2010) Quantitative analysis of a chemical treatment to reduce roughness of parts fabricated using fused deposition modeling. CIRP Ann Manuf Techn 59:247–250CrossRefGoogle Scholar
  26. 26.
    Percoco G, Lavecchia F, Galantucci LM (2012) Compressive properties of FDM rapid prototypes treated with a low cost chemical finishing. Res J Appl Sci Eng Technol 4(19):3838–3842Google Scholar
  27. 27.
    ASTM D638-02 (2002) Standard test method for tensile properties of plastics. ASTM International, West ConshohockenGoogle Scholar
  28. 28.
    ASTM D790-02 (2002) Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. ASTM International, West ConshohockenGoogle Scholar
  29. 29.
    Garg A, Bhattacharya A, Batish A (2016) On surface finish and dimensional accuracy of FDM parts after cold vapor treatment. Mater Manuf Process 31(4):522–529CrossRefGoogle Scholar
  30. 30.
    Chapman B, Desai S, Muraoka M, Vidolova T (2014) Investigating methods of prototyping with ABS. https://benchapman4.files.wordpress.com/2014/05/teamabs_guidereport.pdf. Accessed 29 March 2016
  31. 31.
    Garg A, Bhattacharya A, Batish A (2015) Failure investigation of fused deposition modelling parts fabricated at different raster angles under tensile and flexural loading. Proc Inst Mech Eng B J Eng Manuf. doi:10.1177/0954405415617447 Google Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  1. 1.Measurement and Process Analysis Laboratory, Department of Mechanical EngineeringIndian Institute of Technology PatnaPatnaIndia
  2. 2.Mechanical Engineering DepartmentThapar UniversityPatialaIndia

Personalised recommendations