Environmentally conscious hybrid bio-composite material selection for automotive anti-roll bar

  • M. T. Mastura
  • S. M. Sapuan
  • M. R. Mansor
  • A. A. Nuraini


In the design of automotive components, substitution of metal with natural fibre as base material is commonly found due to high-energy consumption in producing metal components that affects the environment. Therefore, in this study, natural fibres were selected for a hybrid bio-composite material in the design for an automotive anti-roll bar in order to determine the suitable natural fibre that could satisfy the requirements both of customers and the environment. The study was performed using a combination of Analytic Hierarchy Process and Quality Function Deployment for Environment. In making the final decision, life cycle assessment was performed to support the environmental requirements. The results show that sugar palm fibre is the fibre that can best satisfy the design requirements, with 21.51 % of the total score, followed by kenaf, which obtained 20.18 %. Lastly, both the fibres were compared for the life cycle assessment and the results show that sugar palm has a 10 % lower impact on the environment due to its lower energy consumption and CO2 footprint. Hence, sugar palm fibre is selected as the material to use in the hybrid bio-composite for the automotive anti-roll bar.


Material selection Life cycle assessment Anti-roll bar Hybrid bio-composites 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shin J-H, Jun H-B, Kiritsis D, Xirouchakis P (2011) A decision support method for product conceptual design considering product lifecycle factors and resource constraints. Int J Adv Manuf Technol 52(9–12):865–886. doi: 10.1007/s00170-010-2798-9 CrossRefGoogle Scholar
  2. 2.
    Bovea MD, Pérez-Belis V (2012) A taxonomy of ecodesign tools for integrating environmental requirements into the product design process. J Clean Prod 20:61–71. doi: 10.1016/j.jclepro.2011.07.012 CrossRefGoogle Scholar
  3. 3.
    Ahmad F, Choi HS, Park MK (2015) A review: natural fiber composites selection in view of mechanical, light weight, and economic properties. Macromol Mater Eng 300(1):10–24. doi: 10.1002/mame.201400089 CrossRefGoogle Scholar
  4. 4.
    AL-Oqla FM, Sapuan SM, Ishak MR, Nuraini AA (2016) A decision-making model for selecting the most appropriate natural fiber—polypropylene-based composites for automotive applications. J Compos Mater 50(4):543–556. doi: 10.1177/0021998315577233 CrossRefGoogle Scholar
  5. 5.
    Sharma K, Bora PM, Sharma PK (2012) Hollow cross-section vs.solid cross-section & increasing the diameter of solid cross-section by using finite element analysis of anti-roll bar. Int J Adv Res Sci Eng 1(1):1–11Google Scholar
  6. 6.
    Bayrakceken H, Tasgetiren S, Aslantas K (2006) Fracture of an automobile anti-roll bar. Eng Fail Anal 13(5):732–738. doi: 10.1016/j.engfailanal.2005.04.002 CrossRefGoogle Scholar
  7. 7.
    Prawoto Y, Djuansjah JRP, Tawi KB, Fanone MM (2013) Tailoring microstructures: a technical note on an eco-friendly approach to weight reduction through heat treatment. Mater Des 50:635–645. doi: 10.1016/j.matdes.2013.03.062 CrossRefGoogle Scholar
  8. 8.
    Dhingra R, Das S (2014) Life cycle energy and environmental evaluation of downsized vs. lightweight material automotive engines. J Clean Prod 85:347–358. doi: 10.1016/j.jclepro.2014.08.107 CrossRefGoogle Scholar
  9. 9.
    Renner O, Krahl M, Lepper M, Hufenbach W (2014) Stabilizer bar of fiber reinforced plastic composite and method for its manufacture., US Patent 8,668,212 B2, 11 Mar 2014Google Scholar
  10. 10.
    Burchart-Korol D (2013) Life cycle assessment of steel production in Poland: a case study. J Clean Prod 54:235–243. doi: 10.1016/j.jclepro.2013.04.031 CrossRefGoogle Scholar
  11. 11.
    Olmez GM, Dilek FB, Karanfil T, Yetis U (2016) The environmental impacts of iron and steel industry: a life cycle assessment study. J Clean Prod 130:195–201. doi: 10.1016/j.jclepro.2015.09.139 CrossRefGoogle Scholar
  12. 12.
    Koronis G, Silva A, Fontul M (2013) Green composites: a review of adequate materials for automotive applications. Compos Part B Eng 44(1):120–127. doi: 10.1016/j.compositesb.2012.07.004 CrossRefGoogle Scholar
  13. 13.
    Zarandi MHF, Mansour S, Hosseinijou SA, Avazbeigi M (2011) A material selection methodology and expert system for sustainable product design. Int J Adv Manuf Technol 57(9–12):885–903. doi: 10.1007/s00170-011-3362-y CrossRefGoogle Scholar
  14. 14.
    Mayyas AT, Qattawi A, Mayyas AR, Omar M (2013) Quantifiable measures of sustainability: a case study of materials selection for eco-lightweight auto-bodies. J Clean Prod 40:177–189. doi: 10.1016/j.jclepro.2012.08.039 CrossRefGoogle Scholar
  15. 15.
    Jeya Girubha R, Vinodh S (2012) Application of fuzzy VIKOR and environmental impact analysis for material selection of an automotive component. Mater Des 37:478–486. doi: 10.1016/j.matdes.2012.01.022 CrossRefGoogle Scholar
  16. 16.
    Prasad K, Chakraborty S (2013) A quality function deployment-based model for materials selection. Mater Des 49:525–535. doi: 10.1016/j.matdes.2013.01.035 CrossRefGoogle Scholar
  17. 17.
    Scalice RK, Brascher GC, Becker D (2012) A knowledge-based material selector using Quality Function Deployment principles. Prod Manag Dev 10:23–32. doi: 10.4322/pmd.2012.011 CrossRefGoogle Scholar
  18. 18.
    Kasaei A, Abedian A, Milani AS (2014) An application of Quality Function Deployment method in engineering materials selection. Mater Des 55:912–920. doi: 10.1016/j.matdes.2013.10.061 CrossRefGoogle Scholar
  19. 19.
    Mayyas A, Shen Q, Mayyas A, Shan D, Qattawi A, Omar M (2011) Using Quality Function Deployment and Analytical Hierarchy Process for material selection of Body-In-White. Mater Des 32(5):2771–2782. doi: 10.1016/j.matdes.2011.01.001 CrossRefGoogle Scholar
  20. 20.
    Masui K, Sakao T, Inaba A (2001) Quality function deployment for environment: QFDE (1st report)—a methodology in early stage of DfE. In: Proc. Second Int. Symp. Environ. Conscious Des. Inverse Manuf., Tokyo, 11–15 Dec 2001 pp 852–857. doi: 10.1109/.2001.992480
  21. 21.
    Wu Y, Luo B, Li M (2009) Quality function deployment for environment in product eco-design.In: Int Conf Energy Environ Technol, Guilin, Guangxi, 16–18 Oct 2009, 3:476–479. doi:  10.1109/ICEET.2009.581
  22. 22.
    Saaty TL (1980) The analytic hierarchy process. McGraw-Hill, New YorkzbMATHGoogle Scholar
  23. 23.
    Vinodh S, Jayakrishna K (2011) Environmental impact minimisation in an automotive component using alternative materials and manufacturing processes. Mater Des 32(10):5082–5090. doi: 10.1016/j.matdes.2011.06.025 CrossRefGoogle Scholar
  24. 24.
    Marzbanrad J, Yadollahi A (2012) Fatigue life of an anti-roll bar of a passenger vehicle. World Acad Sci Eng Technol 6(2):204–210Google Scholar
  25. 25.
    Shinde P, Patnaik MMM (2013) Parametric optimization to reduce stress concentration at corner bends of solid and hollow stabilizer bar. Int J Res Aeronaut Mech Eng 1(4):1–15Google Scholar
  26. 26.
    Saaty TL (2003) Decision-making with the AHP: why is the principal eigenvector necessary. Eur J Oper Res 145(1):85–91. doi: 10.1016/S0377-2217(02)00227-8 MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Xu Z, Wei C (1999) A consistency improving method in the analytic hierarchy process. Eur J Oper Res 116(2):443–449. doi: 10.1016/S0377-2217(98)00109-X CrossRefzbMATHGoogle Scholar
  28. 28.
    Chang C-W, Wu C-R, Lin C-T, Chen H-C (2007) An application of AHP and sensitivity analysis for selecting the best slicing machine. Comput Ind Eng 52(2):296–307. doi: 10.1016/j.cie.2006.11.006 CrossRefGoogle Scholar
  29. 29.
    More R, Vachhani D, Raval C (2015) Durability prediction of rear engine bus using virtual proving ground road loads. SAE Tech Pap, No. 2015-26-0237. doi:  10.4271/2015-26-0237
  30. 30.
    Caliskan K (2003) Automated design analysis of anti-roll bars, Dissertation, Middle East Technical UniversityGoogle Scholar
  31. 31.
    AL-Oqla FM, Sapuan SM (2014) Natural fiber reinforced polymer composites in industrial applications: feasibility of date palm fibers for sustainable automotive industry. J Clean Prod 66:347–354. doi: 10.1016/j.jclepro.2013.10.050 CrossRefGoogle Scholar
  32. 32.
    Leroux F, Rabu P, Sommerdijk NAJM, Taubert A (2015) Hybrid materials engineering in biology, chemistry, and physics. Eur J Inorg Chem 2015(7):1086–1088. doi: 10.1002/ejic.201500098 CrossRefGoogle Scholar
  33. 33.
    Funke H, Gelbrich S, Ehrlich A (2013) Development of a new hybrid material of textile reinforced concrete and glass fibre reinforced plastic. Procedia Mater Sci 2:103–110. doi: 10.1016/j.mspro.2013.02.013 CrossRefGoogle Scholar
  34. 34.
    Kistaiah N, Kiran CU, Reddy GR, Rao MS (2014) Mechanical characterization of hybrid composites: a review. J Reinf Plast Compos 33(14):1364–1372. doi: 10.1177/0731684413513050 CrossRefGoogle Scholar
  35. 35.
    Jawaid M, Abdul Khalil HPS, Noorunnisa Khanam P, Abu BA (2011) Hybrid composites made from oil palm empty fruit bunches/jute fibres: water absorption, thickness swelling and density behaviours. J Polym Environ 19(1):106–109. doi: 10.1007/s10924-010-0203-2 CrossRefGoogle Scholar
  36. 36.
    Bledzki AK, Franciszczak P, Meljon A (2015) High performance hybrid PP and PLA biocomposites reinforced with short man-made cellulose fibres and softwood flour. Compos Part A Appl Sci Manuf 74:132–139. doi: 10.1016/j.compositesa.2015.03.029 CrossRefGoogle Scholar
  37. 37.
    AL-Oqla FM, Sapuan SM, Ishak MR, Nuraini AA (2015) Predicting the potential of agro waste fibers for sustainable automotive industry using a decision making model. Comput Electron Agric 113:116–127. doi: 10.1016/j.compag.2015.01.011 CrossRefGoogle Scholar
  38. 38.
    Furtado SCR, Araujo A, Silva A, Alves C, Ribeiro AMR (2014) Natural fibre-reinforced composite parts for automotive applications. Int J Automot Compos 1(1):18–38,  10.1504/IJAUTOC.2014.064112
  39. 39.
    Puglia D, Biagiotti J, Kenny J (2004) A review on natural fibre-based composites—Part II: application of natural reinforcements in composite materials for automotive industry. J Nat Fibers 1(3):23–65. doi: 10.1300/J395v01n03_03 CrossRefGoogle Scholar
  40. 40.
    Ashby MF (2004) Materials Selection in Mechanical Design, 3rd edn. Elsevier Butterworth-Heinemann, OxfordGoogle Scholar
  41. 41.
    Mustafa A, Abdollah MFB, Shuhimi FF, Ismail N, Amiruddin H, Umehara N (2015) Selection and verification of kenaf fibres as an alternative friction material using Weighted Decision Matrix method. Mater Des 67:577–582. doi: 10.1016/j.matdes.2014.10.091 CrossRefGoogle Scholar
  42. 42.
    AL-Oqla FM, Sapuan SM, Ishak MR, Nuraini AA (2015) Selecting natural fibers for bio-based materials with conflicting criteria. Am Journa Appl Sci 12(1):64–71. doi: 10.3844/ajassp.2015.64.71 CrossRefGoogle Scholar
  43. 43.
    Li C, Kim IY, Jeswiet J (2014) Conceptual and detailed design of an automotive engine cradle by using topology, shape, and size optimization. Struct Multidiscip Optim 51(2):547–564. doi: 10.1007/s00158-014-1151-6 CrossRefGoogle Scholar
  44. 44.
    Ishak MR, Sapuan SM, Leman Z, Rahman MZA, Anwar UMK (2011) Characterization of sugar palm (Arenga pinnata) fibres. J Therm Anal Calorim 109(2):981–989. doi: 10.1007/s10973-011-1785-1 CrossRefGoogle Scholar
  45. 45.
    Williams GI, Wool RP (2000) Composites from natural fibers and soy oil resins. Appl Compos Mater 7(5–6):421–432. doi: 10.1023/A:1026583404899 CrossRefGoogle Scholar
  46. 46.
    Sapuan SM (2014) Tropical natural fibre composites: properties, manufacture and applications. Springer, Singapore. doi: 10.1533/9780857099228.3.365 Google Scholar
  47. 47.
    Mohanty AK, Misra M, Drzal LT (2001) Surface modifications of natural fibers and performance of the resulting biocomposites: an overview. Compos Interfaces 8(5):313–343. doi: 10.1163/156855401753255422 CrossRefGoogle Scholar
  48. 48.
    Misri S, Leman Z, Sapuan SM, Ishak MR (2010) Mechanical properties and fabrication of small boat using woven glass/sugar palm fibres reinforced unsaturated polyester hybrid composite. In: IOP Conf. Ser.: Mater. Sci. Eng. IOP Publishing, Vol 11(1)Google Scholar
  49. 49.
    Ishak MR, Sapuan SM, Leman Z, Rahman MZA, Anwar UMK, Siregar JP (2013) Sugar palm (Arenga pinnata): its fibres, polymers and composites. Carbohydr Polym 91(2):699–710. doi: 10.1016/j.carbpol.2012.07.073 CrossRefGoogle Scholar
  50. 50.
    Akil HM, Omar MF, Mazuki AAM, Safiee S, Ishak ZAM, Abu Bakar A (2011) Kenaf fiber reinforced composites: a review. Mater Des 32(8–9):4107–4121. doi: 10.1016/j.matdes.2011.04.008 CrossRefGoogle Scholar
  51. 51.
    Saba N, Jawaid M, Hakeem KR, Paridah MT, Khalina A, Alothman OY (2015) Potential of bioenergy production from industrial kenaf (Hibiscus cannabinus L.) based on Malaysian perspective. Renew Sustain Energy Rev 42:446–459. doi: 10.1016/j.rser.2014.10.029 CrossRefGoogle Scholar
  52. 52.
    Saba N, Paridah MT, Jawaid M (2015) Mechanical properties of kenaf fibre reinforced polymer composite: a review. Constr Build Mater 76:87–96. doi: 10.1016/j.conbuildmat.2014.11.043 CrossRefGoogle Scholar
  53. 53.
    Lim ZY, Putra A, Nor MJ, Yaakob M (2015) Preliminary study on sound absorption of natural kenaf fiber. In: Proc. Mech. Eng. Res. Day 2015. Centre for Advanced Research on Energy, Melaka, pp 95–96Google Scholar
  54. 54.
    Davoodi MM, Sapuan SM, Ahmad D, Ali A, Khalina A, Jonoobi M (2010) Mechanical properties of hybrid kenaf/glass reinforced epoxy composite for passenger car bumper beam. Mater Des 31(10):4927–4932. doi: 10.1016/j.matdes.2010.05.021 CrossRefGoogle Scholar
  55. 55.
    Mansor MR, Sapuan SM, Zainudin ES, Nuraini AA, Hambali A (2014) Conceptual design of kenaf fiber polymer composite automotive parking brake lever using integrated TRIZ–Morphological Chart–Analytic Hierarchy Process method. Mater Des 54:473–482. doi: 10.1016/j.matdes.2013.08.064 CrossRefGoogle Scholar
  56. 56.
    Borchardt M, Wendt MH, Pereira GM, Sellitto MA (2011) Redesign of a component based on ecodesign practices: environmental impact and cost reduction achievements. J Clean Prod 19(1):49–57. doi: 10.1016/j.jclepro.2010.08.006 CrossRefGoogle Scholar
  57. 57.
    Fiksel J (1995) Design for Environment, McGraw-Hill Professional Publishing. doi: 10.2307/302397
  58. 58.
    Fiksel J (2006) Sustainability and resilience: toward a systems approach. Sustain Sci Pract Policy 2(2):14–21Google Scholar
  59. 59.
    Song YS, Youn JR, Gutowski TG (2009) Life cycle energy analysis of fiber-reinforced composites. Compos Part A Appl Sci Manuf 40(8):1257–1265. doi: 10.1016/j.compositesa.2009.05.020 CrossRefGoogle Scholar
  60. 60.
    Doody M (2013) Design and development of a composite automotive anti-roll bar, Dissertation, University of WindsorGoogle Scholar
  61. 61.
    Kanna LS, Tare SV, Kalje AM (2014) Feasibility of hollow stability bar. IOSR J Mech Civ Eng 2014:76–80Google Scholar
  62. 62.
    Purohit M, Kadre S, Shingavi S,Yogesh W, Drishtipan K (2011) Analysis of stabilizer bar using simplified approach. Chinchwad PuneGoogle Scholar
  63. 63.
    Scott MJ, Antonsson EK (1998) Chapter 8: Preliminary vehicle structure design application. In: 10th Int. Conf. Des. Theory Methodol. ASME. pp 183–204Google Scholar
  64. 64.
    Wittek A-M, Richter H-C, Lazarz B (2011) Stabilizer bars : Part 2. Calculations-example. Transp Probl 6(1):137–145Google Scholar
  65. 65.
    Wittek A-M, Richter H-C, Lazarz B (2010) Stabilizer bars : Part 1. Calculations and construction. Transp Probl 5(4):135–143Google Scholar
  66. 66.
    Ariff H, Salit MS, Ismail N, Nukman Y (2008) Use of analytical hierarchy process (ahp) for selecting the best design concept. J Teknol 49(1):1–18,  10.11113/jt.v49.188
  67. 67.
    Raharjo H, Endah D (2006) Evaluating relationship of consistency ratio and number of alternatives on rank reversal in the AHP. Qual Eng 18(1):39–46. doi: 10.1080/08982110500403516 CrossRefGoogle Scholar
  68. 68.
    Dicker MPM, Duckworth PF, Baker AB, Francois G, Hazzard MK, Weaver PM (2014) Green composites: a review of material attributes and complementary applications. Compos Part A: Appl Sci Manuf 56:280–289. doi: 10.1016/j.compositesa.2013.10.014 CrossRefGoogle Scholar
  69. 69.
    Faruk O, Bledzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37(11):1552–1596. doi: 10.1016/j.progpolymsci.2012.04.003 CrossRefGoogle Scholar
  70. 70.
    Bachtiar D, Sapuan SM, Zainudin ES, Khalina A, Dahlan KZM (2010) The tensile properties of single sugar palm (Arenga pinnata) fibre. In: IOP Conf. Ser. Mater. Sci. Eng. Vol 11(1)Google Scholar
  71. 71.
    Zampaloni M, Pourboghrat F, Yankovich SA, Rodgers BN, Moore J, Drzal LT, Mohanty AK, Misra M (2007) Kenaf natural fiber reinforced polypropylene composites: a discussion on manufacturing problems and solutions. Compos Part A: Appl Sci Manuf 38(6):1569–1580. doi: 10.1016/j.compositesa.2007.01.001 CrossRefGoogle Scholar
  72. 72.
    Ramamoorthy SK, Skrifvars M, Persson A (2015) A Review of natural fibers used in biocomposites: plant, animal and regenerated cellulose fibers. Polym Rev 55(1):107–162. doi: 10.1080/15583724.2014.971124 CrossRefGoogle Scholar
  73. 73.
    Sahari J, Sapuan SM, Zainudin ES, Maleque MA (2012) Sugar palm tree : a versatile plant and novel source for biofibres, biomatrices, and biocomposites. Polym Renewable Resour 3(2):61–78Google Scholar
  74. 74.
    Goda K, Cao Y (2007) Research and development of fully green composites reinforced with natural fibers. J Solid Mech Mater Eng 1(9):1073–1084. doi: 10.1299/jmmp.1.1073 CrossRefGoogle Scholar
  75. 75.
    Kelly-Yong TL, Lee KT, Mohamed AR, Bhatia S (2007) Potential of hydrogen from oil palm biomass as a source of renewable energy worldwide. Energy Policy 35(11):5692–5701. doi: 10.1016/j.enpol.2007.06.017 CrossRefGoogle Scholar
  76. 76.
    Devi LU, Bhagawan SS, Thomas S (1997) Mechanical properties of pineapple leaf fiber-reinforced polyester composites. J Appl Polym Sci 64(9):1739–1748. doi: 10.1002/(SICI)1097-4628(19970531)64:9<1739::AID-APP10>3.0.CO;2-T CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  • M. T. Mastura
    • 1
    • 2
  • S. M. Sapuan
    • 1
    • 3
  • M. R. Mansor
    • 2
  • A. A. Nuraini
    • 1
  1. 1.Department of Mechanical and Manufacturing EngineeringUniversiti Putra MalaysiaSerdangMalaysia
  2. 2.Faculty of Mechanical EngineeringUniversiti Teknikal Malaysia MelakaDurian TunggalMalaysia
  3. 3.Laboratory of Biocomposite TechnologyInstitute of Tropical Forestry and Forest Products (INTROP) Universiti Putra MalaysiaSerdangMalaysia

Personalised recommendations