Optimization of MQL flow rate for minimum cutting force and surface roughness in end milling of hardened steel (HRC 40)

  • Mozammel Mia
  • Mahmood Al Bashir
  • Md Awal Khan
  • Nikhil Ranjan Dhar
ORIGINAL ARTICLE

Abstract

The present work focuses on the performance modeling of hard milling to attain an optimum parameter setting for the minimum cutting force and surface roughness. Furthermore, it was attempted to compute the minimum quantity lubricant flow rate precisely, besides the cutting speed and table feed rate, by adopting Grey-based Taguchi method and composite desirability function. The experimental data was collected by end milling of hardened AISI 4140 steel using carbide cutter under dry and minimum quantity lubrication conditions according to Taguchi L16 orthogonal array. The predictive model of the responses was formulated by using response surface methodology. The analysis of variance revealed that the table feed has the maximum influence on cutting force, and the flow rate of lubricant has the highest effect on surface roughness. The parameter setting at lower table feed, higher cutting speed, and 150-ml/h lubricant flow yield the minimum value of the responses. Finally, the results of confirmation test verified the adequacy and supremacy of the optimization models; however, Grey-based Taguchi method induced a better optimization.

Keywords

Hard machining Minimum quantity lubrication Surface roughness Cutting force Grey relational analysis Response surface methodology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mia M, Dhar NR (2016) Optimization of surface roughness and cutting temperature in high-pressure coolant-assisted hard turning using Taguchi method. The International Journal of Advanced Manufacturing Technology:1–15 doi:10.1007/s00170-016-8810-2
  2. 2.
    Shen Y, Liu Y, Sun W, Dong H, Zhang Y, Wang X, Zheng C, Ji R (2015) High-speed dry compound machining of Ti6Al4V. J Mater Process Technol 224:200–7CrossRefGoogle Scholar
  3. 3.
    Shen Y, Liu Y, Zhang Y, Dong H, Sun W, Wang X, Zheng C, Ji R (2015) High-speed dry electrical discharge machining. Int J Mach Tools Manuf 93:19–25CrossRefGoogle Scholar
  4. 4.
    Dhar N, Kamruzzaman M (2007) Cutting temperature, tool wear, surface roughness and dimensional deviation in turning AISI-4037 steel under cryogenic condition. Int J Mach Tools Manuf 47(5):754–9CrossRefGoogle Scholar
  5. 5.
    Khan M, Mithu M, Dhar N (2009) Effects of minimum quantity lubrication on turning AISI 9310 alloy steel using vegetable oil-based cutting fluid. J Mater Process Technol 209(15):5573–83CrossRefGoogle Scholar
  6. 6.
    Attanasio A, Gelfi M, Giardini C, Remino C (2006) Minimal quantity lubrication in turning: effect on tool wear. Wear 260(3):333–8CrossRefGoogle Scholar
  7. 7.
    Dhar N, Ahmed M, Islam S (2007) An experimental investigation on effect of minimum quantity lubrication in machining AISI 1040 steel. Int J Mach Tools Manuf 47(5):748–53CrossRefGoogle Scholar
  8. 8.
    Hwang Y-K, Lee C-M, Park S-H (2009) Evaluation of machinability according to the changes in machine tools and cooling lubrication environments and optimization of cutting conditions using Taguchi method. Int J Precis Eng Manuf 10(3):65–73CrossRefGoogle Scholar
  9. 9.
    Rabiei F, Rahimi A, Hadad M, Ashrafijou M (2015) Performance improvement of minimum quantity lubrication (MQL) technique in surface grinding by modeling and optimization. J Clean Prod 86:447–60CrossRefGoogle Scholar
  10. 10.
    Jiang Z, Zhou F, Zhang H, Wang Y, Sutherland JW (2015) Optimization of machining parameters considering minimum cutting fluid consumption. J Clean Prod 108:183–91CrossRefGoogle Scholar
  11. 11.
    Sharma P, Sidhu BS, Sharma J (2015) Investigation of effects of nanofluids on turning of AISI D2 steel using minimum quantity lubrication. J Clean Prod 108:72–9CrossRefGoogle Scholar
  12. 12.
    Mulyadi IH, Balogun VA, Mativenga PT (2015) Environmental performance evaluation of different cutting environments when milling H13 tool steel. J Clean Prod 108:110–20CrossRefGoogle Scholar
  13. 13.
    Wang C, Li K, Chen M, Liu Z (2015) Evaluation of minimum quantity lubrication effects by cutting force signals in face milling of Inconel 182 overlays. J Clean Prod 108:145–57CrossRefGoogle Scholar
  14. 14.
    Pusavec F, Deshpande A, Yang S, M’Saoubi R, Kopac J, Dillon OW, Jawahir I (2014) Sustainable machining of high temperature nickel alloy–Inconel 718: part 1—predictive performance models. J Clean Prod 81:255–69CrossRefGoogle Scholar
  15. 15.
    Shokoohi Y, Khosrojerdi E, Shiadhi BR (2015) Machining and ecological effects of a new developed cutting fluid in combination with different cooling techniques on turning operation. J Clean Prod 94:330–9CrossRefGoogle Scholar
  16. 16.
    Sarıkaya M, Güllü A (2015) Multi-response optimization of minimum quantity lubrication parameters using Taguchi-based Grey relational analysis in turning of difficult-to-cut alloy Haynes 25. J Clean Prod 91:347–57CrossRefGoogle Scholar
  17. 17.
    Nam JS, Kim DH, Chung H, Lee SW (2015) Optimization of environmentally benign micro-drilling process with nanofluid minimum quantity lubrication using response surface methodology and genetic algorithm. J Clean Prod 102:428–36CrossRefGoogle Scholar
  18. 18.
    Duchosal A, Serra R, Leroy R, Hamdi H (2015) Numerical optimization of the minimum quantity lubrication parameters by inner canalizations and cutting conditions for milling finishing process with Taguchi method. J Clean Prod 108:65–71CrossRefGoogle Scholar
  19. 19.
    Hadad M, Sadeghi B (2013) Minimum quantity lubrication-MQL turning of AISI 4140 steel alloy. J Clean Prod 54:332–43CrossRefGoogle Scholar
  20. 20.
    Sarıkaya M, Güllü A (2014) Taguchi design and response surface methodology based analysis of machining parameters in CNC turning under MQL. J Clean Prod 65:604–16CrossRefGoogle Scholar
  21. 21.
    Hadad M (2015) An experimental investigation of the effects of machining parameters on environmentally friendly grinding process. J Clean Prod 108:217–31CrossRefGoogle Scholar
  22. 22.
    Vazquez E, Gomar J, Ciurana J, Rodríguez CA (2015) Analyzing effects of cooling and lubrication conditions in micromilling of Ti6Al4V. J Clean Prod 87:906–13CrossRefGoogle Scholar
  23. 23.
    Thepsonthi T, Hamdi M, Mitsui K (2009) Investigation into minimal-cutting-fluid application in high-speed milling of hardened steel using carbide mills. Int J Mach Tools Manuf 49(2):156–62CrossRefGoogle Scholar
  24. 24.
    Jayal AD, Balaji A (2009) Effects of cutting fluid application on tool wear in machining: interactions with tool-coatings and tool surface features. Wear 267(9):1723–30CrossRefGoogle Scholar
  25. 25.
    Ju-Long D (1982) Control problems of Grey systems. Syst Control Lett 1(5):288–94MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  • Mozammel Mia
    • 1
  • Mahmood Al Bashir
    • 2
  • Md Awal Khan
    • 3
  • Nikhil Ranjan Dhar
    • 4
  1. 1.Ahsanullah University of Science and TechnologyDhakaBangladesh
  2. 2.Wichita State UniversityWichita, KSUSA
  3. 3.Military Institute of Science and TechnologyDhakaBangladesh
  4. 4.Bangladesh University of Engineering and TechnologyDhakaBangladesh

Personalised recommendations