Phenomenological modelling of micro-cutting based on experimental results

  • Romain Piquard
  • Sébastien Thibaud
  • Alain D’Acunto
  • Michaël Fontaine
  • Daniel Dudzinski


In micro-milling, cutting forces are driven by many parameters, including feed per tooth, depth of cut, rake angle and machined material. Because of size effects, issues inherent in the micro-milling process, such as chatter, edge radius or tool deflection, influence the cutting forces making it difficult to understand the process. To overcome this problem, the best solution is to perform experiments independently on each parameter. With orthogonal and oblique micro-cutting experiments, chip formation is investigated with fewer parameters. This study aimed to model micro-cutting using the results obtained from orthogonal and oblique micro-cutting experiments, based on tube turning ignoring dynamic considerations. It was experimentally observed that a jump in cutting forces occurs when the uncut chip thickness decreases, described as a transient regime between ploughing and shearing dominant regimes. The ploughing regime for low uncut chip thicknesses is characterised by a normal force greater than the cutting force. At higher uncut chip thicknesses, the cutting force is dominant. A phenomenological model was developed to take into account the divergence in cutting forces at low uncut chip thicknesses. The model was divided into two terms that model, respectively, ploughing and shearing regimes with a continuous transient regime. The model reproduced the behaviour quite well and could be enriched with more parameters.


Micro-cutting Cutting forces Modelling Elementary cutting Ploughing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cheng K, Huo D (2013) Micro-cutting fundamentals and applications. WileyGoogle Scholar
  2. 2.
    Dornfeld D, Min S, Takeuchi Y (2006) Recent advances in mechanical micromachining. CIRP Ann Manuf Technol 55:745–768. doi: 10.1016/j.cirp.2006.10.006 CrossRefGoogle Scholar
  3. 3.
    Aramcharoen A, Mativenga PT (2009) Size effect and tool geometry in micromilling of tool steel. Precis Eng 33:402–407. doi: 10.1016/j.precisioneng.2008.11.002 CrossRefGoogle Scholar
  4. 4.
    Sawangsri W, Cheng K (2016) An innovative approach to cutting force modelling in diamond turning and its correlation analysis with tool wear. Proc Inst Mech Eng Part B J Eng Manuf 230:405–415CrossRefGoogle Scholar
  5. 5.
    Mian A, Driver N, Mativenga PT (2011) Identification of factors that dominate size effect in micro-machining. Int J Mach Tools Manuf 51:383–394. doi: 10.1016/j.ijmachtools.2011.01.004 CrossRefGoogle Scholar
  6. 6.
    Biermann D, Kahnis P (2010) Analysis and simulation of size effects in micromilling. Prod Eng 4:25–34CrossRefGoogle Scholar
  7. 7.
    Afazov SM, Ratchev SM, Segal J, Popov AA (2012) Chatter modelling in micro-milling by considering process nonlinearities. Int J Mach Tools Manuf 56:28–38. doi: 10.1016/j.ijmachtools.2011.12.010 CrossRefGoogle Scholar
  8. 8.
    Afazov SM, Zdebski D, Ratchev SM et al (2013) Effects of micro-milling conditions on the cutting forces and process stability. J Mater Process Technol 213:671–684. doi: 10.1016/j.jmatprotec.2012.12.001 CrossRefGoogle Scholar
  9. 9.
    Malekian M, Park SS, Jun MBG (2009) Modeling of dynamic micro-milling cutting forces. Int J Mach Tools Manuf 49:586–598CrossRefGoogle Scholar
  10. 10.
    Vogler MP, DeVor RE, Kapoor SG (2003) Microstructure-level force prediction model for micro-milling of multi-phase materials. J Manuf Sci Eng 125:202–209CrossRefGoogle Scholar
  11. 11.
    Mian AJ, Driver N, Mativenga PT (2010) A comparative study of material phase effects on micro-machinability of multiphase materials. Int J Adv Manuf Technol 50:163–174CrossRefGoogle Scholar
  12. 12.
    Bissacco G, Hansen HN, Slunsky J (2008) Modelling the cutting edge radius size effect for force prediction in micro milling. CIRP Ann Manuf Technol 57:113–116. doi: 10.1016/j.cirp.2008.03.085 CrossRefGoogle Scholar
  13. 13.
    Armarego EJA (1998) A generic mechanics of cutting approach to predictive technological performance modeling of the wide spectrum of machining operations. Mach Sci Technol 2:191–211CrossRefGoogle Scholar
  14. 14.
    Altintas Y, Jin X (2011) Mechanics of micro-milling with round edge tools. CIRP Ann Manuf Technol 60:77–80CrossRefGoogle Scholar
  15. 15.
    Jing X, Li H, Wang J, Tian Y (2014) Modelling the cutting forces in micro-end-milling using a hybrid approach. Int J Adv Manuf Technol 73:1647–1656. doi: 10.1007/s00170-014-5953-x CrossRefGoogle Scholar
  16. 16.
    Rodríguez P, Labarga JE (2015) Tool deflection model for micromilling processes. Int J Adv Manuf Technol 76:199–207. doi: 10.1007/s00170-014-5890-8 CrossRefGoogle Scholar
  17. 17.
    Kang IS, Kim JS, Kim JH et al (2007) A mechanistic model of cutting force in the micro end milling process. J Mater Process Technol 187–188:250–255. doi: 10.1016/j.jmatprotec.2006.11.155 CrossRefGoogle Scholar
  18. 18.
    Kang IS, Kim JS, Seo YW (2008) Cutting force model considering tool edge geometry for micro end milling process. J Mech Sci Technol 22:293–299. doi: 10.1007/s12206-007-1110-x CrossRefGoogle Scholar
  19. 19.
    Friedrich CR, Kulkarni VP (2004) Effect of workpiece springback on micromilling forces. Microsyst Technol 10:472–477. doi: 10.1007/s00542-004-0375-6 CrossRefGoogle Scholar
  20. 20.
    Wang J, Gong Y, Abba G et al (2009) Chip formation analysis in micromilling operation. Int J Adv Manuf Technol 45:430–447CrossRefGoogle Scholar
  21. 21.
    Fleischer J, Schulze V, Kotschenreuther J (2009) Extension of cutting force formulae for microcutting. CIRP J Manuf Sci Technol 2:75–80CrossRefGoogle Scholar
  22. 22.
    Richard F (1999) Identification du comportement et évaluation de la fiabilité des composites stratifiés. UFCGoogle Scholar
  23. 23.
    Levenberg K (1944) A method for the solution of certain non-linear problems in least squares. Q Appl Math 2:164–168MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11:431–441MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Merchant ME (1945) Mechanics of the metal cutting process. I. Orthogonal cutting and a type 2 chip. J Appl Phys 16(5):267–275Google Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  • Romain Piquard
    • 1
    • 2
  • Sébastien Thibaud
    • 1
  • Alain D’Acunto
    • 2
  • Michaël Fontaine
    • 1
  • Daniel Dudzinski
    • 2
  1. 1.Department of Applied MechanicsFEMTO-ST Institute, UMR 6174, UBFC/UFC/ENSMM/UTBM/CNRSBesançonFrance
  2. 2.LEM3, UMR 7239, Université de Lorraine/Arts et Métiers ParisTech/ENIM/CNRSMetzFrance

Personalised recommendations