Advertisement

Tool vibration in internal turning of hardened steel using cBN tool

  • D. I. Suyama
  • A. E. Diniz
  • R. Pederiva
ORIGINAL ARTICLE

Abstract

The machining of hardened materials with hardness over 45 HRC has been an alternative to grinding since the 1970s, with the commercial availability of cubic boron nitride (cBN) and ceramic tools. However, the low toughness of these types of tool materials makes them very sensitive to damages caused by vibrations, which are critical for operations like internal turning, where the tool resembles a cantilever beam and therefore is susceptible to large deflections. This work aims to contribute to the study of tool performance in internal turning of long holes in hardened AISI 4340 steel in finishing conditions. Different machining conditions, two different tool holders (steel and carbide), and several tool overhangs were tested. The surface finish, acceleration (vibration) signals, and tool wear of cBN inserts were evaluated. The results show that vibration and the material of the tool holder may play a secondary role in the surface finish for stable turning, but the use of carbide tool holders makes the process stable for longer tool overhangs. Moreover, when the cutting becomes unstable, surface roughness is increased severely.

Keywords

Vibration Boring Hard machining Hardened steel cBN 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Klocke F, Brinksmeier E, Weinert K (2005) Capability profile of hard cutting and grinding processes. CIRP Ann Manuf Technol 54(2):22–45. doi: 10.1016/S0007-8506(07)60018-3 CrossRefGoogle Scholar
  2. 2.
    Bartarya G, Choudhury SK (2012) State of the art in hard turning. Int J Mach Tools Manuf 53:1–14. doi: 10.1016/j.ijmachtools.2011.08.019 CrossRefGoogle Scholar
  3. 3.
    Huddle D (2001) New hard turning tools and techniques offer a cost-effective alternative to grinding. Tooling Prod Mag 80:96–103Google Scholar
  4. 4.
    Dogra M, Sharma VS, Sachdeva A, Suri NM, Dureja JS (2010) Tool wear, chip formation and workpiece surface issues in CBN hard turning: a review. Int J Precis Eng Manuf 11(2):341–358. doi: 10.1007/s12541-010-0040-1 CrossRefGoogle Scholar
  5. 5.
    Chinchanikar S, Choudhury SK (2015) Machining of hardened steel—experimental investigations, performance modeling and cooling techniques: a review. Int J Mach Tools Manuf 89:95–109. doi: 10.1016/j.ijmachtools.2014.11.002 CrossRefGoogle Scholar
  6. 6.
    Oliveira AJ, Diniz AE, Ursolino DJ (2009) Hard turning in continuous and interrupted cut with PCBN and whisker-reinforced cutting tools. J Mater Process Technol 209:5262–5270. doi: 10.1016/j.jmatprotec.2009.03.012 CrossRefGoogle Scholar
  7. 7.
    Godoy VAA, Diniz AE (2011) Turning of interrupted and continuous hardened steel surfaces using ceramic and CBN cutting tools. J Mater Process Technol 211:1014–1025. doi: 10.1016/j.jmatprotec.2011.01.002 CrossRefGoogle Scholar
  8. 8.
    Tönshoff HK, Arendt C, Ben Amor R (2000) Cutting of hardened steel. CIRP Ann 49(2):547–566. doi: 10.1016/S0007-8506(07)63455-6 CrossRefGoogle Scholar
  9. 9.
    Diniz AE, Gomes DM, Braghini A Jr (2005) Turning of hardened steel with interrupted and semi-interrupted cutting. J Mater Process Technol 159:240–248. doi: 10.1016/j.jmatprotec.2004.05.011 CrossRefGoogle Scholar
  10. 10.
    Altintas Y (2000) Static and dynamic deformations in machining. In: Altintas Y (ed) Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge University Press, New York, pp 65–121Google Scholar
  11. 11.
    Rivin EI, Kang H (1992) Enhancement of dynamic stability of cantilever tooling structures. Int J Mach Tools Manuf 32(4):539–561. doi: 10.1016/0890-6955(92)90044-H CrossRefGoogle Scholar
  12. 12.
    Akesson H, Smirnova T, Hahansson L (2009) Analysis of dynamic properties of boring bars concerning different clamping conditions. Mech Syst Signal Process 23:2629–22647. doi: 10.1016/j.ymssp.2009.05.012 CrossRefGoogle Scholar
  13. 13.
    Andrén L, Hakansson L, Brandt A, Claesson I (2004) Identification of dynamic properties of boring bar vibrations in a continuous boring operation. Mech Syst Signal Process 18:869–901. doi: 10.1016/S0888-3270(03)00093-1 CrossRefGoogle Scholar
  14. 14.
    Atabey F, Lazoglu I, Altintas Y (2003) Mechanics of boring processes—part I. Int J Mach Tools Manuf 43:463–746. doi: 10.1016/S0890-6955(02)00276-6 CrossRefGoogle Scholar
  15. 15.
    Sortino M, Totis G, Prosperi F (2012) Development of a practical model for selection of stable tooling system configuration in internal turning. Int J Mach Tools Manuf 61:58–70. doi: 10.1016/j.ijmachtools.2012.05.010 CrossRefGoogle Scholar
  16. 16.
    Kiyak M, Kaner B, Sahin I, Aldemir B, Cakir O (2010) The dependence of tool overhang on surface quality and tool wear in the turning process. Int J Adv Manuf Technol 51(5):431–438. doi: 10.1007/s00170-010-2654-y CrossRefGoogle Scholar
  17. 17.
    Selvam MS (1975) Tool vibration and its influence on surface roughness in turning. Wear 35(1):149–157. doi: 10.1016/0043-1648(75)90149-0 CrossRefGoogle Scholar
  18. 18.
    Miguélez MH, Rubio L, Loya JA, Fernández-Sáez J (2010) Improvement of chatter stability in boring operations with passive vibration absorbers. Int J Mech Sci 52:1376–1384. doi: 10.1016/j.ijmecsci.2010.07.003 CrossRefGoogle Scholar
  19. 19.
    Tobias SA (1964) Vibration of machine tools. Prod Eng 43(12):599–608. doi: 10.1049/tpe.1964.0084 CrossRefGoogle Scholar
  20. 20.
    Coromant S (2015) Turning tools. Sandvik, SandvikenGoogle Scholar
  21. 21.
    Diniz AE, Marcondes FC, Coppini NL (2013) Avarias e Desgastes da Ferramenta. In: Diniz AE, Marcondes FC, Coppini NL (eds) Tecnologia da Usinagem dos Materiais, 8th edn. Artilber, São Paulo, pp 107–118Google Scholar
  22. 22.
    Hessainia Z, Belbah A, Yallese MA, Mabrouki T, Rigal J (2013) On the prediction of surface roughness in the hard turning based on cutting parameters and tool vibrations. Measurement 46:1671–1681. doi: 10.1016/j.measurement.2012.12.016 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  1. 1.Faculdade de Engenharia MecânicaUniversidade Estadual de CampinasCampinasBrazil

Personalised recommendations