Influence of structure isotropy of machined surface on the wear process

  • Maciej Matuszewski
  • Tadeusz Mikolajczyk
  • Danil Yu. Pimenov
  • Michal Styp-Rekowski


In this paper, the influence of the configuration of the geometric structure of the machined surface on the course of the wear process of frictional pairs is discussed. Arrangement of traces of machining determined the level of surface structure isotropy. The characteristics of surface layers are discussed, with particular emphasis on the surface structure isotropy. The results of experimental investigations carried out on the specially designed and made setup are presented. As the measures of the wear process, the following quantities were determined: the mass decrement of samples and changes of the surface roughness parameters, root mean square (RMS) of profile R q and reduced peak height of profile R pk . The results of experimental investigations were registered for structures with different levels of isotropy and, thus, traces of machining. The investigations confirm the influence of the tested factors on the intensity of the wear process.


Geometric structure of the surface Isotropy Turning Grinding Electro-discharge machining Roughness Wear 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lu B, Huang W, Ge Y (2004) New model of predicting surface roughness for turning. Zhendong Ceshi Yu Zhenduan/J Vib, Meas Diagn 24:186–188Google Scholar
  2. 2.
    Geier M, Souza AJ (2014) Empirical determination of roughness parameters using wiper tool inserts in finish turning of AISI 4140. Adv Mater Res 845:929–933. doi: 10.4028/ CrossRefGoogle Scholar
  3. 3.
    Tamizharasan T, Selvaraj T, Haq AN (2006) Analysis of tool wear and surface finish in hard turning. Int J Adv Manuf Technol 845:929–933. doi: 10.1007/s00170-004-2411-1 Google Scholar
  4. 4.
    Mikolajczyk T (2013) Optimization of single edge tools exploitation process. Appl Mech Mater 332:431–436. doi: 10.4028/ CrossRefGoogle Scholar
  5. 5.
    Ding T, Zhang S, Wang Y, Zhu X (2010) Empirical models and optimal cutting parameters for cutting forces and surface roughness in hard milling of AISI H13 steel. Int J Adv Manuf Technol 51(1–4):45–55. doi: 10.1007/s00170-010-2598-2 CrossRefGoogle Scholar
  6. 6.
    Pimenov DY (2014) Experimental research of face mill wear effect to flat surface roughness. J Frict Wear 35(3):250–254. doi: 10.3103/S1068366614030118 CrossRefGoogle Scholar
  7. 7.
    Furuno M, Kitajima K, Akamatsu T (2012) Effect of ground surface roughness of ball end mill on cutting characteristics. Adv Mater Res 565:359–364. doi: 10.4028/ CrossRefGoogle Scholar
  8. 8.
    Novak M (2012) Surfaces with high precision of roughness after grinding. Manuf Technol 12:66–70Google Scholar
  9. 9.
    Vainer LG, Davydov VM, Zaev VV (2015) Microgeometry of end surfaces in bidirectional grinding. Russ Eng Res 35(2):105–108. doi: 10.3103/S1068798X15020239 CrossRefGoogle Scholar
  10. 10.
    Novak M (2014) New ways at the fine grinding. Key Eng Mater 581:255–260. doi: 10.4028/ CrossRefGoogle Scholar
  11. 11.
    Mikolajczyk T (2014) Modeling of minimal thickness cutting layer influence on surface roughness in turning. Appl Mech Mater 656:262–269. doi: 10.4028/ CrossRefGoogle Scholar
  12. 12.
    Liu Z, Shi Z, Wan Y (2013) Definition and determination of the minimum uncut chip thickness of microcutting. Int J Adv Manuf Technol 69(5–8):1219–1232. doi: 10.1007/s00170-013-5109-4 Google Scholar
  13. 13.
    Sedlaček M, Podgornik B, Vižintin J (2009) Influence of surface preparation on roughness parameters, friction and wear. Wear 266(3–4):482–487. doi: 10.1016/j.wear.2008.04.017 CrossRefGoogle Scholar
  14. 14.
    Sedlaček M, Vilhena LMS, Podgornik B, Vižintin J (2011) Surface topography modelling for reduced friction. Strojniski Vestn/J Mech Eng 57(9):674–680. doi: 10.5545/sv-jme.2010.140 CrossRefGoogle Scholar
  15. 15.
    Mikolajczyk T (2014) Analyse of possibility of form tools manufacturing using wire cutting EDM. Appl Mech Mater 656:200–205. doi: 10.4028/ CrossRefGoogle Scholar
  16. 16.
    Wu KL, Yan BH, Huang FY, Chen SC (2005) Improvement of surface finish on SKD steel using electro-discharge machining with aluminum and surfactant added dielectric. Int J Mach Tools Manuf 45(10):1195–1201. doi: 10.1016/j.ijmachtools.2004.12.005 CrossRefGoogle Scholar
  17. 17.
    Markopoulos AP, Manolakos DE, Vaxevanidis NM (2008) Artificial neural network models for the prediction of surface roughness in electrical discharge machining. J Intell Manuf 19(3):283–292. doi: 10.1007/s10845-008-0081-9 CrossRefGoogle Scholar
  18. 18.
    Styp-Rekowski M (2001) Znaczenie cech konstrukcyjnych dla trwałości skośnych łożysk kulkowych. (The importance of design features for durability angular contact ball bearings) in polish Wydawnictwo Uczelniane ATR, seria Rozprawy nr 103, BydgoszczGoogle Scholar
  19. 19.
    Czarnecki H (2013) Analiza teoretyczna wpływu stereometrii powierzchni na działanie pary tribologicznej (Theoretical analysis of the impact of stereometry surface to interact tribological pair) in polish). Tribologia 4:19–31Google Scholar
  20. 20.
    Thomas TR (1999) Rough surfaces. Imperial College Press, LondonGoogle Scholar
  21. 21.
    Matuszewski M, Styp-Rekowski M (2004) Significance meaning of texture direction of surfaces’ geometric structure for course of wear process. Int J Appl Mech Eng 9:111–115zbMATHGoogle Scholar
  22. 22.
    Matuszewski M (2013) Features surface geometric structure of machine elements and wear related loss of component weight in friction pair with conformal contact. Probl Tribol 1:81–85Google Scholar
  23. 23.
    Oczoś KE, Lubimow W (2003) Struktura geometryczna powierzchni. (The geometrical structure of the surface) in polish. Oficyna Wydawnicza Politechniki Rzeszowskiej, RzeszówGoogle Scholar
  24. 24.
    PN – EN ISO 4957:2004 (2004) Stale narzędziowe. Tools Steels (in polish) (ISO 4957:1999). Polska, Polski Komitet NormalizacyjnyGoogle Scholar
  25. 25.
    Mironenko VI (2010) Accessories for measuring devices, characterized by optical means for measuring. the patent. 27.01.2010Google Scholar
  26. 26.
    Koval AD, Efremenko VG, Brykov MN, Andrushchenko MI, Kulikovskii RA, Efremenko AV (2012) Principles for developing grinding media with increased wear resistance. Part 1. Abrasive wear resistance of iron-based alloys. J Frict Wear 33(1):39–46. doi: 10.3103/S1068366612010072 CrossRefGoogle Scholar
  27. 27.
    Petre I (2014) Wear model of sliding motion flat surfaces used in mechanical engineering. Appl Mech Mater 658:345–350. doi: 10.4028/ CrossRefGoogle Scholar
  28. 28.
    Erdakov IN, Tkachev VM, Novokreshchenov VV (2014) Increase of wear resistance of steel plates for crushing stations. J Frict Wear 35(6):739–745. doi: 10.3103/S1068366614060051 CrossRefGoogle Scholar
  29. 29.
    Mikolajczyk T (2012) System to surface control in robot machining. Adv Mater Res 463–464:708–711. doi: 10.4028/ CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  • Maciej Matuszewski
    • 1
  • Tadeusz Mikolajczyk
    • 1
  • Danil Yu. Pimenov
    • 2
  • Michal Styp-Rekowski
    • 3
  1. 1.UTP University of Science and TechnologyBydgoszczPoland
  2. 2.South Ural State University (National Research University)ChelyabinskRussia
  3. 3.University of BydgoszczBydgoszczPoland

Personalised recommendations